Normal Estimation and Clipping Methods
Normal Vectors

• How to compute the normal per planar face?

\[n(T) = \frac{(x_j - x_i) \times (x_k - x_i)}{\| (x_j - x_i) \times (x_k - x_i) \|} \]
Normal Vectors

• However, vertex normals are not well defined

• Nevertheless, assume the shape is smooth

\[n(v) = \frac{\sum_{T \in N_1(v)} \omega_T n(T)}{\left\| \sum_{T \in N_1(v)} \omega_T n(T) \right\|} \]

• How to choose \(\omega_T \)? E.g., \(\omega_T = 1, |T|, \theta_T \)
Normal Vectors

• How to transform normal vectors?

• Using the transformation matrix won’t work!
Normal Vectors

• How to transform normal vectors such that orthogonality is preserved?

• The following should hold for
 – a normal \(n \),
 – the transformation matrix \(G \) of the normal,
 – A vector \(t \) orthogonal to the normal,
 – a transformation matrix \(M \) of \(t \):

\[
 n \cdot t = 0 = (Gn) \cdot (Mt)
\]

• Thus, \(G^T M = I \) \(\Rightarrow \) \(G = (M^{-1})^T \)
Clipping

• When and how to perform clipping?

• **Wireframe** rendering:
 – Clipping can be done in *screen coordinates*
 – Cull/Draw the triangle if it is outside/inside
 – Border triangles:
 • Line-Segment clipping or
 • Ignore pixels
Line-Segment Clipping

• Given two endpoints \((x_1, y_1)^T\) and \((x_2, y_2)^T\)

• Line segment in \textit{parametric form}: \(\alpha \in [0,1]\)

\[
x(\alpha) = (1 - \alpha)x_1 + \alpha x_2,
\]
\[
y(\alpha) = (1 - \alpha)y_1 + \alpha y_2.
\]
Line-Segment Clipping

• Liang–Barsky [TOG ‘84] Clipping

• Defer computation of line intersection as much as possible

\[
x(\alpha) = (1 - \alpha)x_1 + \alpha x_2, \\
y(\alpha) = (1 - \alpha)y_1 + \alpha y_2.
\]
Liang–Barsky Clipping

- A point is in the \textit{clip window} if

\[
\begin{align*}
x_{\min} & \leq x_1 + \alpha \Delta x \leq x_{\max}, \\
y_{\min} & \leq y_1 + \alpha \Delta y \leq y_{\max}.
\end{align*}
\]

\[
x(\alpha) = x_1 + \alpha(x_2 - x_1), \\
y(\alpha) = y_1 + \alpha(y_2 - y_1).
\]
Liang–Barsky Clipping

• A point is in the clip window if

\[\alpha p_k \leq q_k, \quad k = 1, 2, 3, 4 \]

• Where

\[
\begin{align*}
p_2 &= -\Delta x, & q_2 &= x_1 - x_{\text{min}} \\
p_4 &= \Delta x, & q_4 &= x_{\text{max}} - x_1 \\
p_1 &= -\Delta y, & q_1 &= y_1 - y_{\text{min}} \\
p_3 &= \Delta y, & q_3 &= y_{\text{max}} - y_1
\end{align*}
\]
Liang–Barsky Clipping

• Determine the final line segment

 – Find k for which $p_k < 0$, then $\alpha_2 = \max \left\{ 0, \frac{q_k}{p_k} \right\}$.

 – Find k for which $p_k > 0$, then $\alpha_4 = \min \left\{ 1, \frac{q_k}{p_k} \right\}$.

 – Similarly for α_1 and α_3
Polygon Clipping

• Follows directly from line-clipping

• Apply clipping to the edges of the polygon

• Clipping a convex polygon against a convex polygon results in at most one convex object
Polygon Clipping

• We can implement a clipping pipeline

• Each clipper clips against one window’s edge
Polygon Clipping

• Example of pipeline clipping
Clipping

• For each model
 – Determine if it is inside/outside the view volume
 • Intersect its bounding box with the view volume
 – For each boundary model
 • Perform polygon-clipping for each triangle

• Thus, extend our clipping to three dimensions
Bounding Box

• How to compute the bounding box?

• Find the minimal/maximal coordinates
3D Polygon Clipping

• Extend Liang–Barsky with the equation

\[z(\alpha) = (1 - \alpha)z_1 + \alpha z_2 \]

• Add near and far clippers in the pipeline

• Need to adjust intersection computations...
3D Polygon Clipping

- **Plane–Line** intersection is given by

\[\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)} \]
Clipping

• When and how to perform clipping?

• Division is expensive
 – Perform clipping before NDC frame (before division by the 4th homogeneous coordinate)
 – The visible volume

\[
\begin{align*}
 w & \geq x \geq -w, \\
 w & \geq y \geq -w, \\
 w & \geq z \geq -w.
\end{align*}
\]
Suggested Readings

• Transforming Normals:

• Interactive Computer Graphics, Chapter 6

• Liang–Barsky Clipping:
 – http://en.wikipedia.org/wiki/Liang%E2%80%93Barsky_algorithm