Geometric Objects and Transformations
Graphics Pipeline

• How can we render a triangle?

• High-level description:
 – Represent the 3D geometry
 – Transform it to a 2D image

• Our 3D objects are given as polygon meshes
Geometric Objects

- Which mathematical entities do we need?
 - Scalars
 - Points
 - Vectors
Geometric Objects – Scalars

• We will use the real numbers, i.e., \(\alpha, \beta \in \mathbb{R} \).

• Two (commutative and associative) operations are defined:
 – Addition: \(\gamma = \alpha + \beta \)
 – Multiplication: \(\gamma = \alpha \cdot \beta \)

• We also have identity elements, 0 and 1.
Geometric Objects – Points

• A location in space

• A point has neither size nor a shape

• Connect points with directed line segments, i.e., it make sense to write $Q = P + v$.
Geometric Objects – Vectors

• Vectors have direction and magnitude

• What relations can we define?

 – Vectors addition:
 \[u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3) \]

 – Scalar-Vector multiplication:
 \[\alpha v = (\alpha v_1, \alpha v_2, \alpha v_3) \]
Geometric Objects – Vectors

• What relations can we define?
 – **Inner (dot) product:**
 \[u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3. \]

• Commutative
 \[u \cdot v = v \cdot u \]

• Linear
 \[(\alpha u + v) \cdot w = \alpha u \cdot w + v \cdot w \]
Geometric Objects – Vectors

• What relations can we define?
 – **Inner (dot) product:**
 \[u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3. \]

• Vectors are **orthogonal** if \(u \cdot v = 0 \)

• \(u, v \) are **orthonormal** if \(u \cdot v = 0 \) and \(||u|| = ||v|| = 1 \)

• **Norm** of a vector: \(||u|| = \sqrt{u \cdot u} \)
Geometric Objects – Vectors

• What relations can we define?
 – Inner (dot) product:
 \[u \cdot v = \| u \| \| v \| \cos \theta. \]

• Vectors are orthogonal if \(u \cdot v = 0 \)

• \(u, v \) are orthonormal if \(u \cdot v = 0 \) and \(\| u \| = \| v \| = 1 \)

• Norm of a vector: \(\| u \| = \sqrt{u \cdot u} \)
Geometric Objects – Vectors

• What relations can we define?

 – Cross product:

 \[u \times v = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \]

 • Anticommutative

 \[u \times v = -v \times u \]

 • Linear

 \[(\alpha u + v) \times w = \alpha u \times w + v \times w \]
Geometric Objects – Vectors

• What relations can we define?
 – Cross product:

\[
\mathbf{u} \times \mathbf{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}
\]

• \(\mathbf{u} \times \mathbf{v} \) is orthogonal to \(\mathbf{u} \) and \(\mathbf{v} \), i.e.,
 \[
 (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = 0 \quad \land \quad (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = 0
 \]

• Area of the parallelogram defined by \(\mathbf{u} \) and \(\mathbf{v} \), i.e.,
 \[
 \|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\|\|\mathbf{v}\| \sin \theta
 \]
Geometric Objects – Vectors

• Why do we need inner/cross products?

• Example: Back face culling

 – For each face, find its normal direction $n = u \times v$

 – Check the sign of its inner product with the viewing direction, i.e., $n \cdot e$
Transformations

• Which transformations do we need?
 – Transform (e.g., rotate) a particular object
 – Transform all of the objects together
 – Transform the camera (position or viewing)
Transformations

• In fact, all of the following frames are needed:

1. Object (model) frame
2. World frame
3. Camera (eye) frame
4. Clip frame
5. Normalized device frame
6. Window frame
7. Screen frame
Transformations

• In fact, all of the following frames are needed:

1. Object (model) frame
2. World frame
3. Camera (eye) frame
4. Clip frame
5. Normalized device frame
6. Window frame
7. Screen frame
Coordinate Systems vs. Frames

• A set of basis vectors, u, v, w, define a coordinate system

• Any vector can be represented in this basis
 \[x = \alpha u + \beta v + \gamma w, \quad \alpha, \beta, \gamma \in \mathbb{R} \]

• Matrix form:
 \[x = \begin{pmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \]
Coordinate Systems vs. Frames

• However, points cannot be represented...

• A frame is defined by \((u, v, w, P_0)\), where \(P_0\) is the origin.

• In practice, we work with \(4 \times 4\) matrices which represent the frames of our program
Frames

• How do we move objects between frames?

• Represent the object in the new frame

 – If M is the change of frames matrix from the original frame to (u, v, w, P)

 – Apply M^T to the object, i.e.,

 $$
 \begin{pmatrix}
 u_1 v_1 & w_1 & P_1 \\
 u_2 & v_2 & w_2 P_2 \\
 u_3 & v_3 & w_3 P_3 \\
 0 & 0 & 0 & 1
 \end{pmatrix}
 $$
Changing Frames

- We store all object transformations in Model and World frames in T_m and T_w, respectively.

- Similarly, we have the Camera transformation matrix, T_c.

- Thus, to move from Model frame to Camera frame, we apply $T = T_c^{-1} \circ T_w \circ T_m$. Why?
Changing Frames

• T positions the camera relative to the objects

• Choose: transform the objects or the camera

• The matrix T is called the Model-View matrix

• Do we really need to compute inverses?

\[(T_1 \circ T_2)^{-1} = T_2^{-1} \circ T_1^{-1} \]
Question

• How can we implement a “look at” feature?

• The camera should snap to a certain object

• Basically, a change of frames for the camera...
Visual Studio Project

• A C++ project with the following classes:

 – **Model** class: geometry, frame, ...
 – **Camera** class: frame, projection, ...
 – **Scene** class: stores objects, cameras, lights, ...
 – **Renderer** class: renders the scene to an output
 – Math related classes
Visual Studio Project – Model Class

class Model {
protected:
 virtual ~Model() {}
 void virtual draw()=0;
 Geometry T;
 mat4 mTransform;
};
Visual Studio Project – Camera Class

class Camera {
 // constructors
 mat4 cTransform;
 mat4 projection;

public:
 void setTransformation(const mat4& T);
 void setProjection(const mat4& T);
 void LookAt(...);
 void Ortho(...);
 void Perspective(...);
 ...
};
Visual Studio Project – Scene Class

class Scene {
 vector<Model*> models;
 vector<Camera*> cameras;
 renderer *m_renderer;

public:
 Scene(Renderer *renderer);
 void AddModel(Model* model);
 void AddCamera(Model* model);
 Model* GetModel(int model_id);
 ...
 void draw();
};
Visual Studio Project – Renderer Class

class Renderer{
 float *m_outBuffer; // 3*width*height
 float *m_zbuffer; // width*height
 int m_width, m_height;
 void CreateBuffers(int width, int height);

public:
 // construction
 void Init();
 void DrawTriangles(vector<vec3>* vertices);
 void SetCameraTransform(mat4& cTransform);
 void SetProjection(mat4& projection);
 void SetObjectMatrix(mat4& oTransform, mat3& nTransform);
 void SwapBuffers();
}

class vec3 {
public:
 GLfloat x;
 GLfloat y;
 GLfloat z;
 vec3(GLfloat s = GLfloat(0.0)):
 x(s), y(s), z(s) {}

 vec3(GLfloat x, GLfloat y, GLfloat z):
 x(x), y(y), z(z) {}
 ...
}
vec3 operator + (const vec3& v) const {
 return vec3(x + v.x, y + v.y, z + v.z);
}

vec3 operator * (const GLfloat s) const {
 return vec3(s*x, s*y, s*z);
}

vec3 operator * (const vec3& v) const {
 return vec3(x*v.x, y*v.y, z*v.z);
}
class mat2 {
 vec2 _m[2];
public:
 mat2(const GLfloat d = GLfloat(1.0)){
 _m[0].x = d; _m[1].y = d;
 }
 mat2(const vec2& a, const vec2& b){
 _m[0] = a; _m[1] = b;
 }
 mat2(GLfloat m00, GLfloat m10,
 GLfloat m01, GLfloat m11) {
 _m[0] = vec2(m00, m01);
 _m[1] = vec2(m10, m11);
 }
}
mat2 operator + (const mat2& m) const {
 return mat2(_m[0]+m[0], _m[1]+m[1]);
}
mat2 operator * (const GLfloat s) const {
 return mat2(s*_m[0], s*_m[1]);
}
mat2 operator * (const mat2& m) const {
 mat2 a(0.0);
 for (int i = 0; i < 2; ++i)
 for (int j = 0; j < 2; ++j)
 for (int k = 0; k < 2; ++k)
 a[i][j] += _m[i][k] * m[k][j];
 return a;
}
Suggested Readings

• Interactive Computer Graphics, Chapter 3 and Appendices B and C.