Geometric Objects and Transformations
Graphics Pipeline

• How can we render a triangle?

• High-level description:
 – Represent the 3D geometry
 – Transform it to a 2D image

• Our 3D objects are given as polygon meshes
Geometric Objects

• Which mathematical entities do we need?
 – Scalars
 – Points
 – Vectors
Geometric Objects – Scalars

• We will use the real numbers, i.e., $\alpha, \beta \in \mathbb{R}$.

• Two (commutative and associative) operations are defined:
 – **Addition**: $\gamma = \alpha + \beta$
 – **Multiplication**: $\gamma = \alpha \cdot \beta$

• We also have identity elements, 0 and 1.
Geometric Objects – Points

• A location in space

• A point has neither size nor a shape

• Connect points with directed line segments, i.e., it make sense to write $Q = P + v$.
Geometric Objects – Vectors

• Vectors have **direction** and **magnitude**

• What relations can we define?

 – Vectors **addition**:
 \[u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3) \]

 – Scalar-Vector **multiplication**:
 \[\alpha v = (\alpha v_1, \alpha v_2, \alpha v_3) \]
Geometric Objects – Vectors

• What relations can we define?
 – Inner (dot) product:
 \[u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3. \]

 • Commutative
 \[u \cdot v = v \cdot u \]

 • Linear
 \[(\alpha u + v) \cdot w = \alpha u \cdot w + v \cdot w \]
Geometric Objects – Vectors

• What relations can we define?
 – Inner (dot) product:
 \[u \cdot v = u_1v_1 + u_2v_2 + u_3v_3. \]

• Vectors are orthogonal if \(u \cdot v = 0 \)

• \(u, v \) are orthonormal if \(u \cdot v = 0 \) and \(||u|| = ||v|| = 1 \)

• Norm of a vector: \(||u|| = \sqrt{u \cdot u} \)
Geometric Objects – Vectors

• What relations can we define?
 – Inner (dot) product:
 \[u \cdot v = \|u\|\|v\| \cos \theta. \]

• Vectors are orthogonal if \(u \cdot v = 0 \)

• \(u, v \) are orthonormal if \(u \cdot v = 0 \) and \(\|u\| = \|v\| = 1 \)

• Norm of a vector: \(\|u\| = \sqrt{u \cdot u} \)
Geometric Objects – Vectors

• What relations can we define?
 – Outer (cross) product:
 \[u \times v = \begin{pmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} \]

• Anticommutative
 \[u \times v = -v \times u \]

• Linear
 \[(\alpha u + v) \times w = \alpha u \times w + v \times w \]
Geometric Objects – Vectors

• What relations can we define?
 – Outer (cross) product:

\[u \times v = \begin{pmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} \]

• \(u \times v \) is orthogonal to \(u \) and \(v \), i.e.,

\[(u \times v) \cdot u = 0 \quad \wedge
(u \times v) \cdot v = 0 \]

• Area of the parallelogram defined by \(u \) and \(v \), i.e.,

\[||u \times v|| = ||u|| ||v|| \sin \theta \]
Geometric Objects – Vectors

• Why do we need inner/outer products?

• Example: Back face culling

 – For each face, find its normal direction \(n = u \times v \)

 – Check the sign of its inner product with the viewing direction, i.e., \(n \cdot e \)
Transformations

• Which transformations do we need?
 – Transform (e.g., rotate) a particular object
 – Transform all of the objects together
 – Transform the camera (position or viewing)
Transformations

- In fact, all of the following **frames** are needed:
 1. Object (model) frame
 2. World frame
 3. Camera (eye) frame
 4. Clip frame
 5. Normalized device frame
 6. Screen (window) frame
Transformations

• In fact, all of the following *frames* are needed:

1. Object (model) frame
2. World frame
3. Camera (eye) frame
4. Clip frame
5. Normalized device frame
6. Screen (window) frame
Coordinate Systems vs. Frames

• A set of basis vectors, \(u, v, w \), define a coordinate system

• Any vector can be represented in this basis

\[
x = \alpha u + \beta v + \gamma w, \quad \alpha, \beta, \gamma \in \mathbb{R}
\]

• Matrix form:

\[
x = \begin{pmatrix}
 u_1 & v_1 & w_1 \\
 u_2 & v_2 & w_2 \\
 u_3 & v_3 & w_3
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
\]
Coordinate Systems vs. Frames

• However, points cannot be represented...

• A frame is defined by \((u, v, w, P_0)\), where \(P_0\) is the origin.

• In practice, we work with \(4 \times 4\) matrices which represent the frames of our program.
Frames

• How do we move objects between frames?

• Represent the object in the new frame
 – If M is the change of frames matrix from the original frame to (u, v, w, P)

 – Apply M^T to the object, i.e.,
 $$
 \begin{pmatrix}
 u_1 v_1 w_1 P_1 \\
 u_2 v_2 w_2 P_2 \\
 u_3 v_3 w_3 P_3 \\
 0 & 0 & 0 & 1
 \end{pmatrix}
 $$
Changing Frames

• We store all transformations in Model and World frames in T_m and T_w, respectively.

• Similarly, we have the Camera frame, T_c.

• Thus, to move from Model frame to Camera frame, we apply $T = T_c^{-1} \circ T_w \circ T_m$. Why?
Changing Frames

- \(T\) positions the camera relative to the objects
- Choose: transform the objects or the camera
- The matrix \(T\) is called the Model-View matrix
- Do we really need to compute inverses?
 \[
 (T_1 \circ T_2)^{-1} = T_2^{-1} \circ T_1^{-1}
 \]

\[T = T_c^{-1} \circ T_w \circ T_m\]
Question

• How can we implement a “look at” feature?

• The camera should snap to a certain object

• Basically, a change of frames for the camera...
Visual Studio Project

• A C++ project with the following classes:
 – Model class: geometry, frame, ...
 – Camera class: frame, projection, ...
 – Scene class: stores objects, cameras, lights, ...
 – Renderer class: renders the scene to an output
 – Math related classes
class Model {
protected:
 virtual ~Model() {}
 void virtual draw()=0;
 Geometry T;
 mat4 mTransform;
};
Visual Studio Project – Camera Class

class Camera {
 // constructors
 mat4 cTransform;
 mat4 projection;

public:
 void setTransformation(const mat4& T);
 void setProjection(const mat4& T);
 void LookAt(...);
 void Ortho(...);
 void Perspective(...);
 ...
};
class Scene {
 vector<Model*> models;
 vector<Camera*> cameras;
 renderer *m_renderer;

public:
 Scene(Renderer *renderer);
 void AddModel(Model* model);
 void AddCamera(Model* model);
 Model* GetModel(int model_id);
 ...
 void draw();
};
Visual Studio Project – Renderer Class

class Renderer{
 float *m_outBuffer; // 3*width*height
 float *m_zbuffer; // width*height
 int m_width, m_height;
 void CreateBuffers(int width, int height);

public:
 // construction
 void Init();
 void DrawTriangles(vector<vec3>* vertices);
 void SetCameraTransform(mat4& cTransform);
 void SetProjection(mat4& projection);
 void SetObjectMatrix(mat4& oTransform,
 mat3& nTransform);
 void SwapBuffers();
}

class vec3 {
public:
 GLfloat x;
 GLfloat y;
 GLfloat z;
 vec3(GLfloat s = GLfloat(0.0)):
 x(s), y(s), z(s) {}
 vec3(GLfloat x, GLfloat y, GLfloat z):
 x(x), y(y), z(z) {}
...
vec3 operator + (const vec3& v) const {
 return vec3(x + v.x, y + v.y, z + v.z);
}

vec3 operator * (const GLfloat s) const {
 return vec3(s*x, s*y, s*z);
}

vec3 operator * (const vec3& v) const {
 return vec3(x*v.x, y*v.y, z*v.z);
}
class mat2 {
 vec2 _m[2];

public:
 mat2(const GLfloat d = GLfloat(1.0)){
 _m[0].x = d; _m[1].y = d;
 }
 mat2(const vec2& a, const vec2& b){
 _m[0] = a; _m[1] = b;
 }
 mat2(GLfloat m00, GLfloat m10,
 GLfloat m01, GLfloat m11) {
 _m[0] = vec2(m00, m01);
 _m[1] = vec2(m10, m11);
 }
}
Visual Studio Project – Matrix Class

mat2 operator + (const mat2& m) const {
 return mat2(_m[0]+m[0], _m[1]+m[1]);
}
mat2 operator * (const GLfloat s) const {
 return mat2(s*_m[0], s*_m[1]);
}
mat2 operator * (const mat2& m) const {
 mat2 a(0.0);
 for (int i = 0; i < 2; ++i)
 for (int j = 0; j < 2; ++j)
 for (int k = 0; k < 2; ++k)
 a[i][j] += _m[i][k] * m[k][j];
 return a;
}
Suggested Readings

• *Interactive Computer Graphics*, Chapter 3 and Appendices B and C.