Rasterization
or “Know where to draw the line”
Reminder - Pipeline

3D Model

Transformations

Polygon at [(2,9), (5,7), (8,9)]
Raster Display

- The screen is a discrete grid of elements called *pixels*

- Shapes drawn by setting some pixels “on”
Rasterization

• How to draw geometric primitives?
 – Convert from geometric definition to pixels
 – *rasterization* = selecting the pixels

• Will be done frequently
 – must be fast:
 • use integer arithmetic
 • use addition instead of multiplication
Terminology

- **Pixel**: Picture element
 - Smallest accessible element in picture
 - Usually rectangular or circular

- **Aspect Ratio**: Ratio between physical dimensions of pixel (not necessarily 1)

- **Dynamic Range**: Ratio between minimal (not zero) and maximal light intensity emitted by displayed pixel. Measured in bits.
Terminology

- **Resolution**: number of distinguishable rows and columns on device. Measured in
 - Absolute values (1K x 1K)
 - Relative values (300 dots per inch)

- **Screen Space**: discrete 2D Cartesian coordinate system of screen pixels

- **Object Space**: 3D Cartesian coordinate system of the universe where the objects (to be displayed) are embedded
Today

- Drawing lines

- Filling polygons
Naïve Algorithm for Lines

- Line definition: \[ax + by + c = 0 \]
- Also expressed as: \[y(x) = mx + g \]
 - \(m \) = slope
 - \(g \) = \(y(0) \)

For \(x = x_{\text{min}} \) to \(x_{\text{max}} \)

\[y = mx + g \]

light pixel \((x, y)\)
Slope Dependency

• Only works with $-1 \leq m \leq 1$:

$m = 3$

$m = 1/3$

Extend by symmetry for $m > 1$
Problems

- 2 floating-point operations per pixel
- Improvements:
 \[y = m \cdot x_{\text{min}} + g \]
 For \(x = x_{\text{min}} \) to \(x_{\text{max}} \)
 \[y += m \]
 light pixel \((x,y)\)

- Still 1 floating-point operation per pixel
- Compute in floats, pixels in integers
Bresenham Algorithm: Idea

- At each step, choice between 2 pixels \(0 \leq m \leq 1\)
Bresenham Algorithm

• Need a criterion to pick
• Distance between line and center of pixel:
 – the *error* associated with this pixel

\[y(x) = mx + g \]
Error vs decision

Special cases

\[err_k = y(x_k) - y_k \]

\(m=0 \)
- Go right
- err=0

\(m=1 \)
- Go right & up
- err=0

\(m=1/2 \)
- right
- right & up
- err = 1/2
- err = -1/2
Bresenham Algorithm

• Choose by sign of \(e = e_1 - e_2 \)

if \(e < 0 \)
 go right
 update \(e \)

Else
 go right and up
 update \(e \)
Bresenham Algorithm

- Choose by sign of \(e = e_1 - e_2 \)

\[y = y_{\text{min}} \]

For \(x = x_{\text{min}} \) to \(x_{\text{max}} \)

 if \(e < 0 \)

 // \(y \) stays fixed

 update \(e \)

Else

 \(y++ \)

 update \(e \)

light pixel \((x, y)\)
Update e

- $m < 1/2$, first iterations

$$(x_k, y_k)$$

$$e_1 = m, \quad e_2 = 1 - m$$

$$e = 2m - 1$$

$$(x_k + 1, y_k)$$

$$e_1 = 2m, \quad e_2 = 1 - 2m$$

$$e = 4m - 1$$

$$e += 2m$$
Update e

- $m > 1/2$, first iterations

$$(x_k, y_k)$$

$$e_1 = m, \quad e_2 = 1 - m$$

$$e = 2m - 1$$

$$(x_k + 1, y_k + 1)$$

$$e_1 = 2m - 1, \quad e_2 = 2 - 2m$$

$$e = 4m - 3$$

$$e += 2m - 2$$
Update e

$y = y_{\text{min}}$

For $x=x_{\text{min}}$ to x_{max}

if $e < 0$

 // y stays fixed
 $e += 2m$

Else

 $y++$

 $e += 2m-2$

light pixel (x,y)
Initialize e

- Initialize e

 $e = 2^m - 1$

 $y = y_{\text{min}}$

 For $x=x_{\text{min}}$ to x_{max}

 if $e < 0$

 // y stays fixed

 $e += 2^m$

 Else

 $y++$

 $e += 2^{m-2}$

 light pixel (x,y)
Bresenham Algorithm

In integers

\[
e = 2m - 1 \quad d = 2\Delta y - \Delta x
\]

\[
y = y_{\text{min}}
\]

For \(x=x_{\text{min}}\) to \(x_{\text{max}}\)

if \(e < 0\)

// \(y\) stays fixed

\[
e \mathrel{+}= 2m \quad d \mathrel{+}= 2\Delta y
\]

Else

\[y++\]

\[
e \mathrel{+}= 2m - 2 \quad d \mathrel{+}= 2\Delta y - 2\Delta x
\]

light pixel \((x, y)\)

\[
m = \frac{\Delta y}{\Delta x} = \frac{y_{\text{max}} - y_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}
\]

\[d = e \Delta x\]
Bresenham Algorithm
In integers

\[d = 2\Delta y - \Delta x \]
\[y = y_{\text{min}} \]
For \(x = x_{\text{min}} \) to \(x_{\text{max}} \)

 if \(d < 0 \)
 // \(y \) stays fixed
 \[d += 2\Delta y \]

 Else
 \(y++ \)
 \[d += 2\Delta y - 2\Delta x \]

light pixel \((x, y)\)

\[m = \frac{\Delta y}{\Delta x} = \frac{y_{\text{max}} - y_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} \]
\[d = e \Delta x \]
Bresenham Algorithm
In integers

\textbf{Line}(x_1, y_1, x_2, y_2)

\begin{align*}
x &= x_1 \\
y &= y_1 \\
\Delta x &= x_2 - x_1 \\
\Delta y &= y_2 - y_1 \\
d &= 2\Delta y - \Delta x \\
\Delta e &= 2\Delta y \\
\Delta ne &= 2\Delta y - 2\Delta x
\end{align*}

\textbf{PlotPixel}(x, y)

\begin{align*}
\text{while } (x < x_2) \text{ do} \\
&\text{For } x = x_1 \text{ to } x_2 \\
&\text{if } d < 0 \quad \text{then} \quad d += \Delta e \\
&\text{else} \quad y++ \\
&\text{d } += \Delta ne \\
&\text{PlotPixel} \ (x, y)
\end{align*}
Generalizations

• Circles

• Other algebraic curves

• Line intensity

• Line thickness

• Anti-aliasing
Polygon Fill
The Problem

• Problem:
 – Given a closed 2D polygon fill its interior with specified color on graphics display

• Assumptions:
 – Polygon is simple
 • No self intersections
 – Polygon is simply connected
 • No holes

• Solutions:
 – Flood fill
 – Scan conversion
Flood Fill Algorithm

• Let P be a polygon whose boundary is already drawn
• Let C be the color to fill the polygon
• Let $p = (x, y) \in P$ be a point inside P
Flood Fill

\[
\text{FloodFill}(\text{Polygon } P, \text{ int } x, \text{ int } y, \text{ Color } C) \\
\text{if not } (\text{OnBoundary}(x, y, P) \text{ or Colored}(x, y, C)) \\
\text{begin} \\
\quad \text{PlotPixel}(x, y, C); \\
\quad \text{FloodFill}(P, x + 1, y, C); \\
\quad \text{FloodFill}(P, x, y + 1, C); \\
\quad \text{FloodFill}(P, x, y - 1, C); \\
\quad \text{FloodFill}(P, x - 1, y, C); \\
\text{end;}
\]
Pros and Cons?

- Correctness
- Simplicity
- Efficiency in time and space
- Limitations
 - Very large stack required
Basic Scan Conversion Algorithm

- Let P be a polygon with n vertices v_0 to v_{n-1} ($v_n = v_0$)
- Let C be the color
- Each intersection of straight line with boundary moves in/out the polygon
- Detect (and set) pixels inside the polygon boundary
Basic Scan Conversion

\textbf{ScanConvert} (Polygon }P\text{, Color }C\text{)

For }y := 0\text{ to ScreenYMax do

\(I \leftarrow \text{Points of intersections of edges of } P\text{ with line } Y = y \);

Sort }I\text{ in increasing } X \text{ order and}

Fill with color }C\text{ alternating segments ;

end ;
Special Cases
Comparison

<table>
<thead>
<tr>
<th>Flood Fill</th>
<th>Scan Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very simple</td>
<td>More complex</td>
</tr>
<tr>
<td>Discrete algorithm in screen space</td>
<td>Discrete algorithm in object and/or screen space</td>
</tr>
<tr>
<td>Requires <code>GetPixelVal</code> system call</td>
<td>Device independent</td>
</tr>
<tr>
<td>Requires a seed point</td>
<td>No seed point required</td>
</tr>
<tr>
<td>Requires very large stack</td>
<td>Requires small stack</td>
</tr>
<tr>
<td>Common in paint packages</td>
<td>Used in image rendering</td>
</tr>
<tr>
<td>Unsuitable for line-based Z-buffer</td>
<td>Suitable for line-based Z-buffer</td>
</tr>
</tbody>
</table>
References

• Interactive Computer Graphics, Angel, 6th edition, chapters 6.9, 6.10