Subdivision Schemes
What is Subdivision?

- Subdivision is a process in which a poly-line/mesh is recursively refined in order to achieve a smooth curve/surface.

- Two main groups of schemes:
 - Approximating - original vertices are moved
 - Interpolating – original vertices are unaffected

Is the scheme used here interpolating or approximating?
Why Subdivision?

Frame from “Geri's Game” by Pixar
Why Subdivision?

- LOD
- Compression
- Smoothing

52Kb
424Kb
1Kb
Corner Cutting

control point

limit curve

control polygon
Corner Cutting

control point

limit curve

control polygon

This result is a quadratic B-spline curve. Known as Chaikin scheme.
Cubic Corner Cutting
Cubic Corner Cutting
Four-Point Scheme

control point

limit curve

control polygon
Subdivision Curves

Non interpolatory subdivision schemes
- Corner Cutting

Interpolatory subdivision schemes
- The 4-point scheme
Basic Concepts of Subdivision

- **Subdivision curve** generated by repeatedly applying a subdivision *operator* to given polygon
- **Initial polygon** - control polygon
- **Central questions:**
 - **Convergence**: Given a subdivision operator and a control polygon, does the subdivision process converge?
 - **Smoothness**: Does the subdivision converge to a smooth curve?
 - **Singular points**: Does the subdivision result in a finite set of singular points?
 - **Derivatives**: How can one compute derivatives of subdivision curves/surfaces?
Subdivision Surfaces

- At each iteration
 - Refine mesh
 - Increase number of vertices (approximately) * 4
- Mesh vertices converge to a limit surface
 - After infinite number of subdivision steps
- Every subdivision method has:
 - A method to refine the mesh connectivity
 - Rules to calculate location of new vertices
 - And old if they are effected
- A scheme always consists of 2 main parts:
 - A method to generate the **topology** of the new mesh.
 - Rules to determine the **geometry** of the vertices in the new mesh.
Catmull & Clark Subdivision Scheme

- In each iteration:
 - For each face of the mesh, add a face point.
 - Usually at the centroid of the face.
 - For each edge, add an edge point
 - Average of two neighboring face points
 - Connect all face points to edge points
Triangular Subdivision

- Works only for triangle meshes

- Every triangle replaced by 4 new triangles
- Two kinds of new vertices:
 - Green vertices associated with old edges
 - Yellow vertices associated with old vertices
Loop Subdivision

- New vertex is convex combination of old vertices
- List of weights called subdivision mask or stencil
 - Rule for new yellow vertices
 \((n - \text{vertex valence}) \)
 - Rule for new green vertices

\[
\begin{align*}
 w_n &= \frac{64n}{40 - \left(3 + 2 \cos \left(\frac{2\pi}{n}\right)\right)^2} - n \\
 \text{e.g.} & \quad w_6 = 10
\end{align*}
\]
The Limit Surface

- Limit surfaces of Loop’s subdivision is C^2 almost everywhere.
- Finite set of singular locations where the surface is C^1.
Butterfly Subdivision

- Interpolatory scheme
- New yellow vertices inherit location of old vertices
- New green vertices computed by following stencil:
Limit surfaces of Butterfly subdivision are C^1, but do not have second derivative.
Comparison
Properties

- Require regular connectivity (valence 6) to work well
- Easy to implement
- Local support
- Allow LOD
- Continuous

Drawbacks

- Not always intuitive
- Can have artifacts
- Sometimes difficult to control