לוגיקה ותורת הקבוצות - תרנגול 5

עצמות (המשתנה

казанו בנות מנייה

הגדרה 1: קבוצה A היא בנות מנייה (ב"מ) אם $|A| \leq \aleph_0$ (כלומר, קיימת פונקציה חיה' $f : \mathbb{N} \rightarrow A$).

משפט 1: לכל קבוצה מטים $f : \mathbb{N} \rightarrow A$ קיים אוסף וקטורי פונקציה על A.

הגדרה 2: A היא ב"מ אם יש קבוצה סופית B ולכל $a \in B$ קיים $f(a) \in A$ שترتנגול $f(a) \in B$.

המשתנה: $f : A \rightarrow \mathbb{N}$.

אינסופיות

<table>
<thead>
<tr>
<th>סופיות</th>
<th>אינסופיות</th>
</tr>
</thead>
<tbody>
<tr>
<td>לא ב"מ</td>
<td>נס"מ</td>
</tr>
<tr>
<td>ב"מ</td>
<td>נס"מ</td>
</tr>
</tbody>
</table>

$|A| = \aleph_0$.

$A \sim \mathbb{N}$ שמתי $A \sim \mathbb{N}$ stkגדרה 1: קבוצה A היא ב"מ אם יש קבוצה סופית B ולכל $a \in B$ קיים $f(a) \in A$ שترتנגול $f(a) \in B$.

המשתנה: $f : A \rightarrow \mathbb{N}$.

אינסופיות

<table>
<thead>
<tr>
<th>סופיות</th>
<th>אינסופיות</th>
</tr>
</thead>
<tbody>
<tr>
<td>לא ב"מ</td>
<td>נס"מ</td>
</tr>
<tr>
<td>ב"מ</td>
<td>נס"מ</td>
</tr>
</tbody>
</table>

$|A| = \aleph_0$.

$A \sim \mathbb{N}$.

$\mathbb{P}(\mathbb{N}) \sim \mathbb{R} \sim \{0,1\}^\mathbb{N}$.

$\mathbb{P}(\mathbb{P}(\mathbb{N})) \sim \mathbb{N} \sim \mathbb{Z} \sim \mathbb{Q}$.

$|\mathbb{P}(\mathbb{N})| = 2^{\aleph_0}$.

איך מוכחים קבוצות היא ב"מ נייה?

1. מראים שקיומן פונקציה החיה' f המ"ל \mathbb{N} לקבוצת הפונקציות מעל \mathbb{N}.

2. מראים f מ Throne (מג'ה) של איברי A שלהם שפתיקים:

(א) לכל איבר $a \in A$ קיים $f(a) \in A$ ב"מ ב挈ות

(ב) לכל איבר $a \in A$ קיים $f(a) \in A$ ב"מ ב挈ות של איברי ב挈ות.

3. מ AVCaptureים שפתיקים.
העוסק ב分割 של קבוצות בנות ממיה.xAE \ A = \bigcup A \in X \text{ בו"מ וכ} A \in X \text{ בו"מ לש קבוצת ב"מ או קבוצה ב"מ.}

(א) משפט: יהיו \(A_1, A_2, \ldots, A_k\) קבוצות סופיות של קבוצות בנות ממיה. אם המפעלה الكرטזית

\[A_1 \times A_2 \times \cdots \times A_k \]

(ב) משפט: יהיו \(X\) קבוצת קבוצות. אם \(X\) בו"מ וכ \(A \in X\) בו"מ לש קבוצת ב"מ או קבוצה ב"מ.

תרגיל 1: הוכיח כי הקבוצה הבאה בנות ממיה.

\[C = \{0, 1\} \cup \{0, 1\} \times \{0, 1\} \cup \{0, 1\} \times \{0, 1\} \times \cdots = \bigcup_{i \in \mathbb{N}^+} \{0, 1\}^i \]

פתרון: ראהشت נבוח_series acl לכל \(i \in \mathbb{N}^+\) מתוקים \(i \in \mathbb{N}^+\) קבוצה الكرטזית סופית של קבוצת ב"מ ומ"ג

ב"מ. אם

(א) איחוד ב"מש לקבוצות ב"מולכן גם בסופי קבוצה ב"מ.

C': קבוצת הקטורים הסופיים מעלו הע決ים, קלמר:

\[C' = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \cdots = \bigcup_{i \in \mathbb{N}^+} \mathbb{N}^i \]

(א) פתרון:

 לכל \(i \in \mathbb{N}^+\) מתקיים \(i \in \mathbb{N}^+\) קבוצה الكرטזית סופית של קבוצת ב"מקסימל" ומ"ג

ב"מקסימל. אם

איך מראים ש�בוצת \(A\) איננה בת ממיה?

דר'ל: \(B \leq A\) בחורים קבוצות \(B\) שידועים שאינה בת ממיה \(A\) ורומזים \(A\) ורומזים \(B\) ורומזים \(A\) ורומזים \(B\) ורומזים \(A\)

תרגיל 2: פיתוח מעלה האיב

\(w_i \in \{0, 1\}\) כאמש

\(L_2 = \{0, 00, 000, \ldots\} \quad L_1 = \{01, 1111\}\)

פתרון: קבוצת \(L\) קבוצת כל השפות. התווך \(C\) איננה בת ממיה.

(ב) פתרון:

\(\{0, 1\}^N \sim P(\mathbb{N})\) איננו \(\{0, 1\}^N \sim P(\mathbb{N})\) איננו

\(\{0, 1\}^N \sim P(\mathbb{N})\) איננו \(\{0, 1\}^N \sim P(\mathbb{N})\) איננו

(ב) פתרון

\[f : \{0, 1\}^N \to \mathcal{L} \text{ לע 미י } \{0, 1\}^N \leq \mathcal{L} \text{ לע 미י } \{0, 1\}^N \leq \mathcal{L} \text{ לע 미י } \{0, 1\}^N \]

\[f(b) = \{b_0, b_0 b_1, b_0 b_1 b_2, \ldots\} = \{b_0 b_1 \ldots b_i \mid i \in \mathbb{N}\} \text{ עבור } b = b_0 b_1 b_2 \ldots \in \{0, 1\}^N \]

.firebase

\[f(000\ldots) = \{000, 000\ldots\} \]

\[f(010101\ldots) = \{0, 010101, 0101, \ldots\} \]
תרגיל 3: נסמי ב”מ - נ悶ה

הצורה: נסמי ב”מ - נ悶ה

נ悶ה: נסמי ב”מ - נ悶ה

הצורה: נסמי ב”מ - נ悶ה

נ悶ה: נסמי ב”מ - נ悶ה
For each $i \in \mathbb{N}$, let $c_i = \begin{cases} 1 - b^{i/2} & \text{if } i \text{ is even} \\ 0 & \text{if } i \text{ is odd} \end{cases}$.

Define $g(i) = \begin{cases} f_i(i/2) + 1 & \text{if } i \text{ is even} \\ \left\lfloor \frac{i}{2} \right\rfloor & \text{if } i \text{ is odd} \end{cases}$.

Therefore, g is a function from $\mathbb{N} \to \mathbb{N}$, and $g(i)$ is defined as:

$$g(i) = \begin{cases} f_i(i/2) + 1 & \text{if } i \text{ is even} \\ \left\lfloor \frac{i}{2} \right\rfloor & \text{if } i \text{ is odd} \end{cases}$$
ההוכחה בונה לכסום לשקבת הפונקציות. הוכיחו: נזרוק белל הקטן ביותר הפונקציה \(f : \mathbb{N} \rightarrow A \) שאינה חח"ע. רצימי למסוג הפונקציה \(f \) עצמן:

\[f(i) = i \quad \text{כanmarק cụם, } i \in \mathbb{N}, \quad g \neq f(i) \]

ברצוננו למצוא פונקציה \(g : \mathbb{N} \rightarrow A \) ש砵 sonra \(f \):

\[g(i) = p_i^{f(i)+1} \]

(\(p_0 = 2, p_1 = 3, \ldots \))

\(g(i) \) תוגדר על ידי:

\(g(i) = p_i^{f(i)+1} \)

לפי הפרק יחיד להוכחה:

\[i = j \iff p_i = p_j \]

לפי הפסקה לעיל הפסק יחיד להוכחה:

\[p_i^{f(i)+1} = p_j^{f(j)+1} \]

לפי ההגדרה חוח"ע \(g \in \mathbb{N}^\mathbb{N} \).

לפי הגדרה בלטינית \(i \neq j \iff g(i) \neq g(j) \).

לפי התוכן בכולו \(g(i) = p_i^{f(i)+1} \)

לפי ביטוי בכולו \(g(i) = p_i^{f(i)+1} \neq f(i) \iff i \in \mathbb{N} \) כי \(g(i) \)นาย לפי \(g \) לכל \(i \).