Memory
DDR-SDRAM

- 2n-prefetch architecture
 - The DRAM cells are clocked at the same speed as SDR SDRAM
 - Internal data bus is twice the width of the external data bus
 - Data capture occurs twice per clock cycle
 - Lower half of the bus sampled at clock rise
 - Upper half of the bus sampled at clock fall

- Uses 2.5V (vs. 3.3V in SDRAM)
 - Reduced power consumption
DIMMs

- **DIMM: Dual In-line Memory Module**
 - A small circuit board that holds memory chips

- **64-bit wide data path (72 bit with parity)**
 - Single sided: 9 chips, each with 8 bit data bus
 - 512 Mbit / chip × 8 chips ⇒ 512 Mbyte per DIMM
 - Dual sided: 18 chips, each with 4 bit data bus
 - 256 Mbit / chip × 16 chips ⇒ 512 Mbyte per DIMM
DDR2

- **DDR2 achieves high-speed using 4-bit prefetch architecture**
 - SDRAM cells read/write $4 \times$ the amount of data as the external bus
 - DDR2-533 cell works at the same frequency as a DDR266 SDRAM or a PC133 SDRAM cell

- **This method comes at a price of increased latency**
 - DDR2-based systems may perform worse than DDR1-based systems
DDR3

- **30% a power consumption reduction compared to DDR2**
 - 1.5 V supply voltage, compared to DDR2's 1.8 V or DDR's 2.5 V
 - 90 nanometer fabrication technology

- **Higher bandwidth**
 - 8 bit deep prefetch buffer (vs. 4 bit in DDR2 and 2 bit in DDR)

- **Transfer data rate**
 - Effective clock rate of 800–1600 MHz using both rising and falling edges of a 400–800 MHz I/O clock.
 - DDR2: 400–800 MHz using a 200–400 MHz I/O clock
 - DDR: 200–400 MHz based on a 100–200 MHz I/O clock

- **DDR3 DIMMs**
 - 240 pins, the same number as DDR2, and are the same size
 - Electrically incompatible, and have a different key notch location
The high latency of DDR3 SDRAM has negative effect on streaming operations

Source: xbitlabs
SRAM – Static RAM

- True random access
- High speed, low density, high power
- No refresh
- Address not multiplexed

DDR SRAM
- 2 READs or 2 WRITEs per clock
- Common or Separate I/O
- DDRII: 200MHz to 333MHz Operation; Density: 18/36/72Mb+

QDR SRAM
- Two separate DDR ports: one read and one write
- One DDR address bus: alternating between the read address and the write address
- QDRII: 250MHz to 333MHz Operation; Density: 18/36/72Mb+
Read Only Memory (ROM)

- Random Access
- Non volatile
- ROM Types
 - PROM – Programmable ROM
 - Burnt once using special equipment
 - EPROM – Erasable PROM
 - Can be erased by exposure to UV, and then reprogrammed
 - E²PROM – Electrically Erasable PROM
 - Can be erased and reprogrammed on board
 - Write time (programming) much longer than RAM
 - Limited number of writes (thousands)
Flash Memory

- **Non-volatile, rewritable memory**
 - limited lifespan of around 100,000 write cycles

- **Flash drives compared to HD drives:**
 - Smaller size, faster, lighter, noiseless, consume less energy
 - Withstanding shocks up to 2000 Gs
 - Equivalent to a 10 foot drop onto concrete - without losing data
 - Lower capacity (8GB), but going up
 - Much more expensive (cost/byte): currently ~20$/1GB

- **NOR Flash**
 - Supports per-byte addressing
 - Suitable for storing code (e.g. BIOS, cell phone SW)

- **NAND Flash**
 - Supports page-mode addressing (e.g., 1KB blocks)
 - Suitable for storing large data (e.g. pictures, songs)
The Motherboard
Hard Disks
Hard Disk Structure

- **Direct access**
- **Nonvolatile, Large, inexpensive, and slow**
 - Lowest level in the memory hierarchy
- **Technology**
 - Rotating platters coated with a magnetic surface
 - Use a moveable read/write head to access the disk
 - Each platter is divided to tracks: concentric circles
 - Each track is divided to sectors
 - Smallest unit that can be read or written
 - Disk outer parts have more space for sectors than the inner parts
 - Constant bit density: record more sectors on the outer tracks
 - speed varies with track location
- **Buffer Cache**
 - A temporary data storage area used to enhance drive performance
The IBM Ultrastar 36ZX

- Top view of a 36 GB, 10,000 RPM, IBM SCSI server hard disk
- 10 stacked platters
Disk Access

Read/write data is a three-stage process

- **Seek time**: position the arm over the proper track
 - Average: Sum of the time for all possible seek / total # of possible seeks
 - Due to locality of disk reference, actual average seek is shorter: 4 to 12 ms

- **Rotational latency**: wait for desired sector to rotate under head
 - The faster the drives spins, the shorter the rotational latency time
 - Most disks rotate at 5,400 to 15,000 RPM
 - At 7200 RPM: 8 ms per revolution
 - An average latency to the desired information is halfway around the disk
 - At 7200 RPM: 4 ms

- **Transfer block**: read/write the data
 - Transfer Time is a function of:
 - Sector size
 - Rotation speed
 - Recording density: bits per inch on a track
 - Typical values: 100 MB / sec

- **Disk Access Time** = Seek time + Rotational Latency + Transfer time + Controller Time + Queuing Delay
Solid State Drive – SSD

- Performance numbers used by most manufacturers represent "burst rate"
 - Not its steady state or average read rate
- Any write operation requires an erase followed by the write
 - When SSD is new, NAND flash memory is pre-erased
- Consumer-grade multi-level cell (MLC) – allows ≥2 bit per flash memory cell
 - Sustains 2,000 to 10,000 write cycles
 - Notably less expensive than SLC drives
- Enterprise-class single-level cell (SLC) – allows 1 bit per flash memory cell
 - Lasts 10× write cycles of an MLC
- The more write/erase cycles there are, the shorter the drive's lifespan
 - Wear-leveling algorithms evenly distribute data across flash memory, and move data around, so that no one portion wears out faster than another
 - SSD's controller keeps a record of where data is set down on the drive as it is relocated from one portion to another
 - Add DRAM cache to buffer data writes to reduce the number of write/erase cycles
 - Have extra memory cells; when blocks of flash memory wear out, use spare blocks
SSD (cont.)

- Data in NAND flash memory organized in fixed size in blocks
 - When any portion of the data on the drive is changed
 - Mark block for deletion in preparation for accommodating the new data
 - Read current data on the block
 - Redistribute the old data
 - Lay down the new data in the old block
 - Old data is rewritten back
 - Typical write amplification is 15 to 20
 - For every 1MB of data written to the drive, 15MB to 20MBs of space is actually needed
 - Using write combining reduces write amplification to ~10%
The BIOS
System Start-up

Upon computer turn-on several events occur:

1. The CPU "wakes up" and sends a message to activate the BIOS

2. BIOS runs the Power On Self Test (POST):
 - make sure system devices are working ok
 - Initialize system hardware and chipset registers
 - Initialize power management
 - Test RAM
 - Enable the keyboard
 - Test serial and parallel ports
 - Initialize floppy disk drives and hard disk drive controllers
 - Displays system summary information
3. During POST, the BIOS compares the system configuration data obtained from POST with the system information stored on a memory chip located on the MB
 - A CMOS chip, which is updated whenever new system components are added
 - Contains the latest information about system components

4. After the POST tasks are completed
 - the BIOS looks for the boot program responsible for loading the operating system
 - Usually, the BIOS looks on the floppy disk drive A: followed by drive C:

5. After boot program is loaded into memory
 - It loads the system configuration information contained in the registry in a Windows® environment, and device drivers

6. Finally, the operating system is loaded