Splay tree operations

- **Find**
 Finding an element in the splay tree follows the same behavior as in a BST. After we find our node, we splay it. *(Note: if the node is not found, we splay the last node reached.)*

- **Find-Min**
 This operation will only go down the left children, until none are left. After we find the min node, we splay it.

- **Find-Max**
 The process for this is the same as for $\text{Find} - \text{Min}$, except we go down the right child.

- **Join**
 Given two trees T_1 and T_2 with $\text{key}(x) < \text{key}(y)$ $\forall x \in T_1, y \in T_2$, we can join T_1 and T_2 into one tree with the following steps:
 1. $\text{Find} - \text{Max}(T_1)$. This makes the max element of T_1 the new root of T_1.
 2. Make T_2 the right child of this root.

- **Split**
 Given a tree T and a pivot i, the split operation partitions T into two BSTs:
 \[
 T_1: \{x | \text{key}(x) \leq i\} \\
 T_2: \{x | \text{key}(x) > i\}
 \]
 We split the tree T by performing $\text{Find}(i)$. This Find will then splay on a node, call it x, which brings it to the root of the tree. We can then cut the tree; everything on the right of x belongs to T_2, and everything on the left belongs to T_1. Depending on its key, we add x to either T_1 or T_2. Thus, we either make the right child or the left child of x a new root by simply removing its pointer to its parent.
 Join and Split make insertion and deletion very simple!

- **Insert**
 Let i be the value we want to insert. We can first split the tree around i. Then, we let node i be the new root, and make the two subtrees the left and right subtrees of i respectively.

- **Delete**
 To delete a node i from a tree T, we first $\text{Find}(i)$ in the tree, which brings node i to the root. We then delete node i, and are left with its left and right subtrees. Because everything in the left subtree has key less than everything in the right subtree, we can then join them.