אלגוריתמים נומריים
(234125)
פרק 6 – התמרת פורייה בדידה
DFT
עמית בויארסקי, אביב תשעה
מטריצת טופליץ (Toeplitz)

$T_{ij} = t_{i-j}$

זהו מטריצה שאלכסוניה קבועה קבוצי:

$$
\begin{bmatrix}
 t_0 & t_1 & t_2 & \cdots & t_{m-1} \\
 t_{-1} & t_0 & t_1 & & \\
 t_{-2} & t_{-1} & t_0 & & \\
 \vdots & \vdots & \ddots & \ddots & \\
 t_{1-n} & t_{2-n} & \cdots & t_{m-n} \\
\end{bmatrix}
$$

כמה דרגות חופש יש במתריצת זו?
콘בולוציה

נסמן קונבולוציה כו: \[z = x \otimes h \]

\[z_k = \sum_{j=0}^{n-1} x_{k-j} h_j \]

מהו אורך וקטור התוצאה?

משפט: פעולת הקונבולוציה סימטרית

\[z = x \otimes h = h \otimes x \]
ДО İsМА:

\[x = [1 \ 1 \ 1 \ 1 \ 1 \ 1] \]

\[h = [1 \ 2 \ 3] \]

\[y = [1 \ 3 \ 6 \ 6 \ 6 \ 5 \ 3] \]

\[y = \text{conv}(x, h); \]
דוגמה:

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
</tbody>
</table>
דוגמא:

| 3 | 2 | 1 |

שיקוף

\[x \]

\[h \]

\[y \]
דוגמה:

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y</td>
</tr>
</tbody>
</table>
דוגמה:

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & x \\
3 & 2 & 1 & & & h \\
1 & 3 & & & & y \\
\end{array}
\]
דגרמה:

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & x \\
\end{array}
\]

\[
\begin{array}{ccc}
3 & 2 & 1 & h \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 3 & 6 & y \\
\end{array}
\]
דוגמאות:

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & x \\
\end{array}
\]

\[
\begin{array}{ccc}
3 & 2 & 1 & h \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 3 & 6 & 6 & y \\
\end{array}
\]
דוגמא:

דוגמה:

1 1 1 1 1

\[
x
\]

3 2 1

h

1 3 6 6 6 y
דוגמאות:

\[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & x \\
\hline
3 & 2 & 1 & h \\
1 & 3 & 6 & 6 & 6 & 5 & y
\end{array} \]
דגמה:

1 1 1 1 1

x

3 2 1

h

1 3 6 6 6 5 3

y
ה conoscולוזיה

$$\begin{bmatrix}
z_0 \\
z_1 \\
z_2 \\
\vdots \\
z_{m-1} \\
z_{m+n-2}
\end{bmatrix} =
\begin{bmatrix}
x_0 & x_0 & 0 & 0 \\
x_1 & x_1 & x_0 & 0 \\
x_2 & x_2 & x_1 & x_0 \\
\vdots & \vdots & \vdots & \vdots \\
x_{m-1} & x_{m-1} & \cdots & x_{m-1} \\
x_{m+n-2} & x_{m+n-2} & \cdots & x_{m+n-2}
\end{bmatrix}
\begin{bmatrix}
h_0 \\
h_1 \\
h_2 \\
\vdots \\
h_{n-1}
\end{bmatrix} = Xh$$

מטריצת

סופלי

成果转化
מטריצת סיבובית

זו מטריצה ריבועית שאיב rall מקיימים:

\[c_{i,j} = c_{(j-i) \mod n} \]

כמה דרגות חופש יש במטריצה זו?
конבולוציה ציקלית

• נסמן конволюция ציקלית כ:

$$z = x \boxtimes h$$

$$z_k = \sum_{j=0}^{n-1} x_{(k-j) \mod m} h_j$$

מהו אורך וקטור התוצאה?
קונבולוציה ציקלית

$$\begin{bmatrix} z_0 \\ z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \\ z_6 \\ z_7 \\ z_8 \\ z_9 \\ z_{10} \\ z_{11} \end{bmatrix} = \begin{bmatrix} x_0 & x_8 & x_7 & x_6 \\ x_1 & x_0 & x_8 & x_7 \\ x_2 & x_1 & x_0 & x_8 \\ x_3 & x_2 & x_1 & x_0 \\ x_4 & x_3 & x_2 & x_1 \\ x_5 & x_4 & x_3 & x_2 \\ x_6 & x_5 & x_4 & x_3 \\ x_7 & x_6 & x_5 & x_4 \\ x_8 & x_7 & x_6 & x_5 \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \end{bmatrix} = \begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \\ h_1 \\ h_0 \\ h_2 \\ h_1 \\ h_0 \\ h_3 \\ h_2 \\ h_1 \\ h_0 \\ h_3 \\ h_2 \\ h_1 \\ h_0 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \end{bmatrix}$$
קונבולוציה ציקלית

טענה: הktor התוצאה בקונבולוציה ציקלית מחוזרת ב- \(m \) דחול, דהיינו \(z_{k+Jm} = z_k \) לכל \(J \) שלם.

מספיק לקבוע את מוצא הקונבולוציה עבורי \(k \) בין \(0 \) ל\(m-1 \).
קונבולוציה ליניאריתخلافת ציקלית

מה קרה בקצות הת行った?

- קונבולוציה ליניארית:

| 0 | 0 | 1 | 2 | 3 | 4 | 5 |

- קונבולוציה ציקלית:

| 3 | 2 | 1 |

| 4 | 5 | 1 | 2 | 3 | 4 | 5 |

| 3 | 2 | 1 |
כיצד נחשב קונבולוציה לינארית באמצעות קונבולוציה ציקלית?

נרפד ב- \(n-1 \) אפסים

\[
x \in \mathbb{R}^m
\]

\[
h \in \mathbb{R}^n
\]

\[
y = x \otimes h
\]

\[
x = [1 2 3 4 5];
x__ = [1 2 3 4 5 0 0];
h = [3 2 1];
\]

\[
y = \text{conv}(x, h);
y__ = \text{cconv}(x__, h, \text{length}(x) + \text{length}(h) - 1);
\]
לכסון מערכיOTS במשותק

משטח: אם A ו-B מערכיOTS לכסינה במשותק, אז מכפלתם קומוטטיבית.

$$\Lambda_A = S^{-1}AS \quad \Gamma \quad \Lambda_B = S^{-1}BS$$

דוגמת:

$$A = \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix} \quad B = I + A + \frac{1}{2}A^2 = \begin{bmatrix} 100 & 68 & 73 \\ 70 & 97 & 74 \\ 71 & 76 & 94 \end{bmatrix}$$

מה'? B של A?
ליזון מטריצות סוביות

משפט: כל המטריצות הסיבוביות בגודל \(n \times n \) לכסינות יוניטרית ושמית.

מהי המטריצה המלכסנת \(\Lambda = WCW^H \)?

 Erotציה יוטר \! גוסרט\!\

\[W = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & \ldots & 1 \\ 1 & w_{-1} & w_{-2} & w_{-3} & w_{-4} & \ldots & w_{-1}^{-(n-1)} \\ 1 & w_n & w_{-2} & w_{n} & w_{-4} & \ldots & w_{n}^{-(n-1)} \\ 1 & w_{-1} & w_{n} & w_{-3} & w_{-4} & \ldots & w_{n}^{-(2n-1)} \\ 1 & w_{-2} & w_{n} & w_{n} & w_{-4} & \ldots & w_{n}^{-(3n-1)} \\ 1 & w_{-3} & w_{n} & w_{n} & w_{n} & \ldots & w_{n}^{-(4n-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & w_{-(n-1)} & w_{-(n-1)} & w_{-(n-1)} & w_{-(n-1)} & \ldots & w_{n}^{-(n-1)^2} \end{bmatrix} \]

\[w_n = \exp \left\{ \frac{j2\pi}{n} \right\} \]
ליזןון המטריצות סיבוביות

מהם הערכים העצמיים?

\[
C = \begin{bmatrix}
 c_0 & c_1 & c_2 & \cdots & c_{n-1} \\
 c_{n-1} & c_0 & c_1 & \cdots & c_{n-2} \\
 c_{n-2} & c_{n-1} & c_0 & \cdots & c_{n-3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 c_1 & c_2 & c_3 & \cdots & c_0
\end{bmatrix}
\]

\[
\lambda_\ell = \sum_{k=0}^{n-1} c_k w_n^{-\ell k}
\]

\[
\begin{bmatrix}
 \lambda_0 \\
 \lambda_1 \\
 \lambda_2 \\
 \lambda_3 \\
 \vdots \\
 \lambda_{n-1}
\end{bmatrix} = \begin{bmatrix}
 1 & 1 & 1 & 1 & 1 & 1 & \cdots & 1 \\
 1 & w_n & w_n^{-2} & w_n^{-3} & w_n^{-4} & \cdots & w_n^{-(n-1)} \\
 1 & w_n & w_n^{-2} & w_n^{-4} & \cdots & w_n^{-(2(n-1))} \\
 1 & w_n & w_n^{-2} & \cdots & w_n^{-(3(n-1))} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & w_n & \cdots & \cdots & w_n^{-(n-1)}
\end{bmatrix} \begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3 \\
 \vdots \\
 c_{n-1}
\end{bmatrix} = \sqrt{n} W_C
\]
התמרה פורייה בדידה

ה baise (טרנספורם פורייה הבדידה (DFT) נתונה על "

$$X_{\ell} = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} x_k w_n^{-\ell k}$$

הباء התמרה ההופכ^-תonta ע"י

$$x_k = \frac{1}{\sqrt{n}} \sum_{\ell=0}^{n-1} X_{\ell} \bar{w}_n^{-\ell k} = \frac{1}{\sqrt{n}} \sum_{\ell=0}^{n-1} X_{\ell} w_n^{\ell k}$$

$${\frac{1}{n}}$$

שימו לב! לעתים הפקטור

$${\frac{1}{\sqrt{n}}}$$

יאני מופיע בטרנספורם ישיר. אם זה יופיע פקטור של

בטרנספורם החופי. זה עניין של הגדרה.
משפט הקונבולוציה

משפט: בהינתן שני וקטורים \(a\) ו- \(b\) באורכי \(n\) ו- \(b\) באנורכי \(m\) מת⛲ים \(c\) \(\in\mathbb{DFT}\) \(\{a\} \cdot \mathbb{DFT}\{b\} = \mathbb{DFT}\{a \otimes b\}\)

מכיוון שישニング לחשב את התמרת פורייה באמצעות אלגוריתם \(\text{FFT}\) ב- \(N\log N\) כתוב של \(\text{FFT}\), לעעית עדיף_lead את הקונבולוציה בשיטה המדהר.