אלגוריתמים נומריים
(234125)
Numerical Algorithms

ברוכים הבאים

מייקל אלכדר
אוקטובר 2018
כמה מילות רקע

קצת הסיקורית...

קורס זה יגרום המוחרכה והמשפרת של קורס שלמהallbackיתشاء

שנים ארוכות – אנליידה נומרית (234107)

אנליידה נומרית? תחומי המפתחים ביि המתחמייה השמישית בין עולם

המתתים. המטרה: בניין אלגוריתמים לפורטור ביעות מתמטיים

בעבר כוס נושאים קלאסיים שאינם קשים בואו כוח מובקק למדיו המתחב

mahot hashinim:

הורדה במכות החומרים

ירדה מ-4 נקודת ל-3 נקודת

מעבר מהרצאות תלע-שלטת לדו-שלטת

עמ זאות... המגרשים ניוויה באורק של שעתית

במרכז העניין בקורס בגרסת ההדשה – שיטות אלגוריתמיות נמרות מבוסס

אלגרה לקיימות ושלמות שלמה Baumschul, ייושם ביעוד MIDU (עד התחבש)
כמה مليות רקע

הרכב הצוות: 10% תריגלי בית (מונ) + 90% בית סופית

תריגלי הבית (8-6 כללו) כללו חלקיום יבשים ורטובים (מקוללת)

זאות הקורס:

מצריים: עידן יבנה

מיכל אלעד (אזרחי)

מתרגלים: עמי בוסרט (אזרחי), רון סלוסברג, גרשון הקסמוני, יונתן רוזנברג
כמה مليות רקע

לפי עבורי (אופייל בהצלה) האם הקורס הזה?

• מופעיים להרצאות (ומבוים כל דבר ששמעו)
• מופעיים לתורנולים (כנ"ל)
• עשים את شبוריحبポートיםעםקורחםבשת(יהיה>Show
• בין תרגולי הבית והחברה)
• נצלא את שעת הקהל אם משתיויןiano
• בהיכנה לדחייה יינידすでלהמתוךלהחבןброוסנימשנים
• קודמות של קורס 3 (זומס של 734107,ابلעספינוואז)

• אוננחוק אתتصمאתכלזומרי הקורס – שקפיסיםוקבצייםחרים
• שיוzig,ابلלדוע – לימודמחומריםלאוכללהוזחליפהאמיתיית
• להופעה להרצאות והתורנולים.לתשומתלבכם...

לפי עבורי (אופייל בהצלה) האם הקורס הזה?
אלגוריתמים נומריים
(234125)
Numerical Algorithms
موتiberna צליית
מה זה אנליזה נומרית?

הדרשה מוויקיפדיה:
"אנליזה נומרית (או חישוב מודעי) היא ענף של מתמטיקה שמתמטקיה של החקר את התשיות הממטית של תמיכות למדעי ואו הערכה של מסרadas. מסריים לביעות מתמטיות שונים, על ידי שיפור במערך סופי של פעולות חשבוניות ופעולה לוגית."
פרקים באנליזה נמרית

אופטימיזציה

התקפת עקומים

מיצאート לארס

עמדות ומקורות

עמדות

חישוב וקירוב

נ干部队伍

אינטגרלים

יתיבת נמרית השילובים

חושב

קירוב

iseconds

ףניקיציה

שירות

העגלת

двигנים

המתמדת פרסה

.osgiי

פתורן נמרא

משואות

דיפרנציאליות

רגל

פתורן מערכות

משואות

דיפרנציאליות

ליניאריות

��וניות
במה עוסקת אלגברה ליניארית נומרית?

הדרור מיקיפדייה (ترجمة شلي مانغلית):

"אלגברה ליניארית נומרית עוסקת בחקור
"אלגורייתמיטי אשר מבצעים פעולות הלוקטור
מקאלגרה ליניארית(בゝייקר פעולות מטריציות
וקטוריית) על מהשבים."

מה זה אומר?

●ignet של נוירוס
●יאני עוד פרק איזה תחת-فصلות בคอยידה נומרית – חוך נויה
●כמו כן, סבתה זהה של כל העברה – מטריציות וקטוריים.
●אננוウォים לארטיק הממון מטריציות וקטוריים במסהר סרן.
●התחלת הנוי בisspaceים מרתקים ממקף, ז鸨 נוכיות, אי
●היתוך הנוי בisspaceים מרתקים ממקף, ז鸨 נוכיות, אי.
נושאים שבבים אנו ניגע בקורס זה? אופטימיזציה

haustat ekonomim

מציאות ערכיים

עוצ奘ים וקטורים

ע住宅

��יבת

נמרי

thalimim

חיים מהיר

טיפוס

סיון

לאינטפרוליזה

וקוסטרופוליזה

פתור נומרי

של משואות

dירפרנציאליזה

רגライト

פתור ערכות

משואות

dירפרנציאליזה

긴ירות

המerra פוריה

ושימושי

קיורוב

פונקציה

שיגיאת

העגלת

dיגיטזיזה
תחומים涉関受しますにおける

- כולל התحماים החלו וברבם
 אтратים, היו ארבע כלים
 חיות ומכדים.
- בעשוריה האחרון, הפך
 למרכזי בקשורות
 במפגון "שומרים".
- במcketר ראשים, המתחדсим
 והחוקים אשר מופקדים על
 פתרון הביצוע בזרות אלחוטי
 בוגרים מ었던 המחשב
 (אלגוריתמים), ממש עם.
עיקרי הדברים שבם נשאート פעמים בקוי

1. פתרון מערכות משוואות ליניאריות

- מערכות של 2 מושואות ב-
- נעלמים חזור סוס העבורה של
 הנגדה, על כל היבטיו.
- אני נוטינו בשאלת - איך
 פתרים מערכות א-ע"ו, מהשב.
- בור ש—heスペנה לשאלת-יהוה
 תולית בתכונות של A
 ו philippines
 הביעה, וכלizando שפע
 אפיישיות וכלולות.
Solve systems of linear equations $Ax = B$ for x - MATLAB

www.mathworks.com/help/matlab/ref/mldivide

This MATLAB function solves the system of linear equations $A^x = B$.

You've visited this page 2 times. Last visit: 9/15/14

Backslash Operator - Newsreader - MATLAB Central - Math...
www.mathworks.com/newsreader

Feb 16, 2009 - Hi, I'm looking for the methods Matlab uses when the backslash operator is used - does it first test for a positive definite matrix then try Cholesky

svd 9 Jan 2011
Inversion of a 21x21 matrix with symbols 19 Nov 2009
inverse of sparse matrix 3 Jul 2008
Inverse of a Matrix 2 Oct 2007

More results from www.mathworks.com

difference between pseudoinversion and backslash o... - New...
https://www.mathworks.com/matlabcentral/newsreader/view_thread

Huge time differences on Inversion - Newsreader - MATLAB ... 23 Apr 2010
how to deal with the inversion problem of a huge s... - Newsreader ... 26 Sep 2009
Out of core ways to use backslash operator for lar ... - Newsreader ... 15 Sep 2009
inv.pinv slash - Newsreader - MATLAB Central - MathWorks 27 Jan 2004

More results from www.mathworks.com

linear algebra - How does the MATLAB backslash operator ... scicomp.stackexchange.com/questions/how-does-the-matlab-backslash... Jan 25, 2012 - How does the MATLAB backslash operator solve $SAx = B$ for square matrices? ... I was comparing a few of my codes to "stock" MATLAB codes

MATLAB- explain how the backslash operator (left division) is ... https://answers.yahoo.com/question
Oct 2, 2010 - can someone give me a brief summary of how the backslash operator (left...
mldivide, \n
Solve systems of linear equations \(Ax = B \) for \(x \).

Syntax

\[
x = A \backslash B \\
x = \text{mldivide}(A,B)
\]

Description

- \(x = A \backslash B \) solves the system of linear equations \(A x = B \). The matrices \(A \) and \(B \) must have the same number of rows.
- \(A \backslash B \) is equivalent to \(A \backslash \).\(B \).
- If \(A \) is a square \(n \times n \) matrix and \(B \) is a matrix with \(n \) rows, then \(x = A \backslash B \) is a solution to the equation \(A x = B \), if it exists.
- If \(A \) is a rectangular \(m \times n \) matrix with \(m \neq n \), and \(B \) is a matrix with \(m \) rows, then \(A \backslash B \) returns a least-squares solution to the system of equations \(A x = B \). \(x = \text{mldivide}(A,B) \) is an alternative way to execute \(x = A \backslash B \), but is rarely used. It enables operator overloading for classes.
عينי הדברים שבهام נעסוק בקורי

נושא נסף ב נעסוק במסגרת 2:
חקר של שגיאות נומרטו ומק_sqrtיאת אורך מילה סופית
בפטור Whatspace משוואות (ליניאריות)

\[A \mathbf{x} = \mathbf{b} \]

\[(A+E) \mathbf{x} = \mathbf{b} + \mathbf{e} \]
עיון הדברים שבحما נפשך בכותב

2. פתרון מקוור של מערכות משוואות

- מה קורה כשיש יוטר משואות
- המערלים, ואיך הסכמת על פתרון משוטף?
- אנוי נטעני בשאלת - איך מעטים
- את הפתרון אשמיר יבין את שיני
- אגפי המשואות לקירבה מירבית.
- גם לאמעה חולי בתכונת של
- וביים, הביע

$Ax \approx b$
עיקרי הדבריים שבאים욱וס בקורה

$A x = \lambda x$

3. מציאת וקטור\'עקר עוצמי של מתrı́יה

- איך נثنין בשאלת - איךeyed המוצאים את אוספי הוקטורים העצמים והערוכים המתחיים שלח, והא בדרכ נומרית ייעול.
- איך נראה שלמשימה זו
- השらくת מעשים ומקורות
- במגון קשים.
עייקרי הדברים שбереж נ蹇וק בקורס

מקרה פרטי מיוחד של בעיה דו-_UNSQ_おすすめ_מבחינה_המכורה
למעריצת A מבהה הקורי

 Dropbox

קובצייו

התמרת פוריה הדיסקרטיות
הדברים שבהם נשوء בקוארט - סיכומים

\[\begin{align*}
Ax &= b \\
Ax &\approx b \\
Ax &= \lambda x
\end{align*} \]

פתרון מערכות משוואות ליניאריות:

פתרון מעקורים של מערכות משוואות:

פתרון בעיות ערכים nacktוריים עצמיה:
האם הקורס Rolled in עבורכם?

מה זה הקורס הלוחות ביוטר לאחרונה? بمדהו המחשב?

הנה לנו רעיונות:
- פיסוק עוסקת ב sistן אלゴרימטים
- גול עוסקת ב sistן אגוזי G ו O ב 'צ', בנמלቦיד
- 'G' כונל ג'ונגל, אפל, טויוטה, NVIDIA, עוד
- עיסוק מובילה-äänון קורונה
- בתוכוך זה בואון ישיר

השובה היא ... למידה עמקה

וזה אחד הספרס
החשובה (וריהitaire) בתוכוך זה
Contents

- Website vii
- Acknowledgments viii
- Notation xi

1. Introduction
 - 1.1 Who Should Read This Book? 8
 - 1.2 Historical Trends in Deep Learning 11

I. Applied Math and Machine Learning Basics 29

2. Linear Algebra
 - 2.1 Scalars, Vectors, Matrices and Tensors 31
 - 2.2 Multiplying Matrices and Vectors 34
 - 2.3 Identity and Inverse Matrices 36
 - 2.4 Linear Dependence and Span 37
 - 2.5 Norms 39
 - 2.6 Special Kinds of Matrices and Vectors 40
 - 2.7 Eigendecomposition 42
 - 2.8 Singular Value Decomposition 44
 - 2.9 The Moore-Penrose Pseudoinverse 45
 - 2.10 The Trace Operator 46
 - 2.11 The Determinant 47
 - 2.12 Example: Principal Components Analysis 48
דומםות ליוושומי

1. מערכות אייקון 글ובלית (GPS)
2. צילום CT
3. גרפייה מחושבת
4. עיבוד אות - תיקון הדמים בעור
5. סיווג مدريد
6. תופעת תמורה
7. חיפוש באינترنت
דואמה 1 - ויוט

ניוט גלובלי (GPS) מואד פופולרי.
כימי זמנים контוט בכלי טלפון
(ומצלמה!). איך זה עבד?
doğמה 1 – ניוט -CSIKOV

mcshir h- GPS Shelm mekbel uot moloni
(31 celala) ovo hebillet hemyide hahe:
- rhat holoni (mupper sidori k),
- koavorishet holoni b'mrachb(x_k,y_k,z_k)
- biho l'mrach doder hayr,
- nukhut hizman t_k ba shoder hemyide biho
lushon golbal moscum.

ma akhnom rosi? lemazon at mekomno
b'mrachb z,y,x (biho l'amot mrach).
comi cn, nini cy bihos l'amot shewo unomi,
nukhut hizman ba k'letho atom haoloni golm
hia t (nulm mosu).

[x_k,y_k,z_k,t_k]

ימע!!!
דוגמה 1 – ניווט – ניסוח מתמטי

\[[x_k,y_k,z_k,t_k] \]

ידוע!!!

\[(x_k-x)^2 + (y_k-y)^2 + (z_k-z)^2 = c^2(t_k-t)^2 \]

המרחק בין הלווין והמכשיר לפרט
 номерידנטות
ולכלית

[\[x,y,z,t\]]
ולא ידוע

לעט עלתה נרצה שכל ליווי יתק
משוואה אחת עמהו 4 כעלוים, ולכן
משוואה אליהם לא יניירואים, ولך
פתוח נוספים לפי התו

"This content is in Hebrew. It contains a diagram and an equation related to satellite navigation. The text explains that a known position \([x_k,y_k,z_k,t_k]\) is given, and the distance between this position and the satellite \([x,y,z,t]\) is calculated using the equation \((x_k-x)^2 + (y_k-y)^2 + (z_k-z)^2 = c^2(t_k-t)^2\). This equation represents the distance in space and time between the satellite and the receiver. The text also mentions that solving such equations is necessary for precise navigation."
ذهبמה 1 – ניוט – הקושר לשון מְשָׁאוֹת הלוויים

- נחדיר מכל גל של משואות הלוויים ה-2, 3, 4, ולפי המה שמענה של המשואות
- הרצאתה, גם במשואות ליניאריות פשיטה על איבריה הנעלמים.

\[(x_k - x)^2 + (y_k - y)^2 + (z_k - z)^2 = c^2 (t - t_k)^2\]

\[= (x_1 - x)^2 + (y_1 - y)^2 + (z_1 - z)^2 = c^2 (t - t_1)^2\]

\[(x_1 - x_k)x + (y_1 - y_k)y + (z_1 - z_k)z + c^2 (t_k - t_1)t = F_{1,k}\]

- ננגן החמיות של לוויים נוכל להציף פתרון של מערכות משואות פשיטה.
- ננשי לרשויות כלולות מהלוויים מספני, נעובר летכניות הקירות.

\[Ax = b\]

 ונשפר את הדיווק.
דוגמה 2 – צילום CT

הדמיה טומוגרפית (Computer-Tomography) היא שיטה לצילום את פנימי גוף וללא פגוע (ctrine). الزיהוי כל הכלים בחלקים שונים של הגוף המושיע לאבחנה של מחולים במקורים שונים. איך זה עובד?
דומם 2 – צילום CT – העיקרון הבסיסי

תומכת הרישות

מקורות x-ray

אלגוריתם שحزור

גלאימ הסופרים

פוטונים

סיןוגרמה
דוגמה 2 – צילום CT – דייסקטוזיה

- הクトוים הרביים (פיקסלים).
- לכל פיקסל 좌ה ניילס ערך
 ייחודי שвяз את מידה לפרוט
 הריקמה ב.
- מביעה שלפנינו: מיקוח
 הערכים נעליים שמרוכבים
 את תמות החר.
- אני נראת שחרור טומוגרפי
 (כלומר מציאת הערכים
 הלולים) בין אלא פתרון של
 מערכות משואות לני素晴らしい.
隃ור של הפריקסל התח.
הפריקסל הווה, ונקה ששתהו 1
فرق

$Output_{\text{[#of photons]}} = Input_{\text{[#of photons]}} \cdot e^{-x \cdot r}$

מקור ה-ray-X

ספרו הפריקסלים

 догמה 2 – צילום CT – העשוי הבסיסי
דוגמה 2 – צילום CT – הרענון הבסיסי

מקור ה-x-ray

\[
\begin{bmatrix}
\text{Output} \\
\#\text{of photons}
\end{bmatrix} = \begin{bmatrix}
\text{Input} \\
\#\text{of photons}
\end{bmatrix} \cdot e^{-x \cdot r}
\]

\[P_{out} = P_{in} \cdot e^{-x_1 r_1} \cdot e^{-x_2 r_2} \cdot \ldots \cdot e^{-x_n r_n}\]

\[= P_{in} \cdot \exp \left\{ -\sum_{k=1}^{n} x_k r_k \right\}\]

\[-\log \left(\frac{P_{out}}{P_{in}} \right) = \sum_{k=1}^{n} x_k r_k\]
לוגמה 2 – צילום CT – הקשר ל-

יתרון התחנה – כל קר מרכיבה
משואה אחות וב צירוף ליינארי
מומשקל של רכיב הפיקסלים
בתחומת התחנה.

ה anomal נאסף כמות גדולה של קרני
(כלומר משוחזר) – יוצר מ- \(\text{NM} \) ואת
אנו בשטירת chipset סף:

\[-\log \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right) = \sum_{k=1}^{n} x_k r_k \]

חלק זה ידוע ותלוי במשפר
הפורטים בכוכס גלף
וביציאה ממנה

גמ חלק זה ידוע והקשר
לגיוסטריה של الكرן

למערכת שונזרה כמות נשלימית
אופייה של מאות אלפים לבעיתו
של חתך בודד.
דווחה 3 – גרפייה

בגסי ה- NLA, בניסיון למדוד את התוכן של אזור
(משטח, מרחוק, סטרים, ווריאציות) ישנו ספק
של שימוש ב-NLA. כאו נמוך בהגדה אחת מני
רבוט: המרעה מענה נקודת למשטח תת-ミמיד.

סרק (מצולמה) 3D, מחתורת אפל,
אינטל, מיקורוסופט, גוגל, ואחרות,
миייר אוסף נקודות במרחב
שנמצאות על פנים המשטח
המולאים. ייצו זה לא מתכונר
فعالות השוואת כנף חלול אזור
מלצואתי על המשטח המתקפל.

נדוט שגויحيיזון. איך זה עובד?
דוגמה 3 – אﺮפים – הביעה

確保研究的進行
דוגמה 3 – גרפייה – הפקת

מרכיב מרצי בפתור בביתה שלפניו היא מיצאת הכיוון האنصر למשתנה בכל הקודה.

לכל קודה \((x_0,y_0,z_0)\) נבצע את סדרת הפיעולות הבאות:

1. איסוף \(x\) שכנותיה הקרבות בעונת הקודה.
2. חישוב הפרשי \(x\) לכל קודה כיוון הפקודה \((x_0,y_0,z_0)\) של \(x\) השחלות חלקי הקגדל \(x\) והקוטרים התל-ancyboxים \(e_1, e_2, \ldots, e_n\).
3. ריכוז הקוטרים אליהם стремונית של \(x\).

המטריצה \(E\) בגודל 3 על \(n\).
זוגמה 3 - גרפיות - הפתרון

4. בנוחת של החסנונים נמצאים על מסוף המשתיים, האנק
בנקודת \((x_0, y_0, z_0)\), אם נסמן \(v_0\) אחורי לקוים

\[v_0^T E = v_0^T \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix} = 0 \]

5. כדי שנ🍏بغור את המדרד במודיע, יש
לפתור בעיות את הביעה הבאה:

\[\frac{\|v_0^T E\|_2^2}{\|v_0\|_2^2} \rightarrow \min \]

6. מתברר כי זו איננה אלאبعثת מקיימת
הוקטור העצמתי של המ坦ינוס \(EE^T\) שונה
לערכ העצומי הקטן ביותר.
דוגמה 3 – גרפיקת מהauga
דוגמה 4 – הורדת зрıt

הקולות קול של מרצה בואלו שלו דודים לא רצויים. קיימות למערכות רבות (אגב, מספר זה קים גים בטלפוןים שלוריים) שלוחמות בהפרעה 2. איך זה עבך?
ܕܘܓܡܐ 4 – حولت ذيـم – الـعـيـنة

נתחיל בניסיון להבין מה קורא ביצירת המדוהה:

אות המדוהה

אות המיוון

אות הדיבור

אות המקיור

ンנוחת a_0

ンנוחת a_1

ンנוחת a_2

ンנוחת a_n

Hash T_1

Hash T_2

Hash T_n
Դոմեհ 4 – հորդատ հիմ-ն տեսակ մատենչ

$x_1, x_2, x_3, x_4, x_5, x_6, x_7, \ldots$

հատում ինքն ստեղծ մասի

$y_k = a_0 x_k + a_1 x_{k-1} + a_2 x_{k-2} + \cdots + a_n x_{k-n}$

հատում մեթոդի մտկերել է' կիշ (մոկր ցույցեր կոնվոլուցի)

动脉, ձմ. 0.2, $a_0 = 1, a_{80} = 0.2$, փորի հիմք հատում ինքն ստեղծ մասի

(ձմ. ձմ. ձմ. ձմ. 80 ձմև) եթեմի մաթեմատիկա մեթոդոն.
לפינוי שטי בינוית שונותشدורים פתרון:

1. דירוג: עליון למטה ואת אוסק יסוד מקדמים התורוק, \(a_0, a_1, a_2, ... , a_n\) לכלומר לזוות את הפקעת בעור.

2. תריק: יdefgroup של מהות הפקעה, עליון למקו ואת ערוח, דירוג

בhintן סדרת הספרים המייצגת את \(y_k\), עליון למדא את \(x_k\).
זוגמה 4 – הורדות חדים –GENCY

$$y_k \Rightarrow \text{היחסים בין הערכים במערך ו IID מעבר ל} x_k \text{ ו-} y_k.$$

שהם العمק של מעוקל של המקרה.

$$a_0, a_1, a_2, \ldots, a_n$$

cעת נוכל להרçiבים לאחר מספר פעולות שלח היגומריים הם:

$$y_{n+1} = a_0 x_{n+1} + a_1 x_n + a_2 x_{n-1} + \ldots + a_n x_1$$
דוגמה 4 - הורדתHeaderText

הｚיון נגעשת עלי" גרימת העורוי באוזן מבוקר וי囿ה x_k וקובולט y_k.

שיםינו יגשה מונומנט של מקור זה:

א_0, a_1, a_2, ... , a_n:

\[y_{n+1} = a_0 x_{n+1} + a_1 x_n + a_2 x_{n-1} + \cdots + a_n x_1 \]
\[y_{n+2} = a_0 x_{n+2} + a_1 x_{n+1} + a_2 x_n + \cdots + a_n x_2 \]
דוגמה 4 – הורדת הדיים – חיות

ה洏יו נעש האר""חнятие העורקים בשאות מקוור ידועו ווקלחת \(y_k \)\\n
shrивג יירס מוקלקת של מקור דה.

\(a_0, a_1, a_2, \ldots, a_n \)\\n
\(y_{n+1} = a_0 x_{n+1} + a_1 x_n + a_2 x_{n-1} + \ldots + a_n x_1 \)\\n
\(y_{n+2} = a_0 x_{n+2} + a_1 x_{n+1} + a_2 x_n + \ldots + a_n x_2 \)\\n
\(y_{n+3} = a_0 x_{n+3} + a_1 x_{n+2} + a_2 x_{n+1} + \ldots + a_n x_3 \)
דוגמה 4 – הורדה חדמא - חדמי

ריכוז האור של המשוואות ייחי

\[
\begin{bmatrix}
 y_{n+1} \\
 y_{n+2} \\
 y_{n+3} \\
 \vdots \\
 y_{n+M}
\end{bmatrix} =
\begin{bmatrix}
 x_{n+1} & x_n & x_{n-1} & \cdots & x_1 \\
 x_{n+2} & x_{n+1} & x_n & \cdots & x_2 \\
 x_{n+3} & x_{n+2} & x_{n+1} & \cdots & x_3 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_{n+M} & \cdots & \cdots & \cdots & x_M
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 \vdots \\
 a_n
\end{bmatrix}
\]

וע"צ, בחירת \(M \geq 1 \) יוצר ומורידيون מנעולים, ובר שיבטיים יכין הפרקטיקס קיים קירוב מדוייק יוצר של מקדמים העורז.
Dlgma 4 – הורדתздрав-ה틴ק

cאשך המקדימים \(a, a_1, a_2, \ldots, a_n \) ודועים, הקישר בין האות הנקלטוזה הרצוי

היא המשואה שנשתנה כאלו,وفقורונה המביא את התıt נטול הזה.

\[
\begin{bmatrix}
y_{n+1} \\
y_{n+2} \\
y_{n+3} \\
\vdots \\
y_{n+M}
\end{bmatrix} =
\begin{bmatrix}
a_n & a_{n-1} & a_{n-2} & \ldots & a_0 & 0 & 0 & 0 & \ldots & 0 \\
0 & a_n & a_{n-1} & \ldots & a_1 & a_0 & 0 & 0 & \ldots & 0 \\
0 & 0 & a_n & \ldots & a_2 & a_1 & a_0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots \\
0 & 0 & 0 & \ldots & 0 & a_n & a_{n-1} & \ldots & a_1 & a_0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_n \\
x_{n+1} \\
x_{n+2} \\
x_{n+3} \\
\vdots \\
x_{n+M}
\end{bmatrix}
\]

שים לב שבمتازת המשואות זו יש יורה עולמים

משואות,ו דו אמר לשדרס מידעת் נוסח על מת

לאפרפר פתרון (למשל ניצול הידיעה על קונ

שקט - אפסים - בתרילת האיה).
לצהמה 5 – סיוג

אני רוזים "לلمד" מחשב להבדיל בינ
디יבר של זכר لديיזויה של נקבה, כלומר
בנין אלגוריתם והואımı אשר יוכל לסווג
디יבר לשתי ק Tattoים או לא. איך זה עבד?

בעיה זו והderabad שלוט協 lawful לפתרונה
משייכים לתוך התוכן עזר
הקורו "למידה חישובית",
והשימשו כל אחד בו NLA ב
רבה וויה.
דוגמה 5 – סיווג – הגשה יסוד

iyor המידעה: אני נינו של怎能וירונה ודרש עלפי להלכה. לכל כל ה
shall 5 שנויות שלילהים של הלאה החלה – זכר/נקבה. כל כתה
יומר לשת בלט מספרים מאפיינים בתחליק בורר לכלשה שלא ידו
כאמ (כנון). (MFCC).

דוגמאט לאימוניך: יש ב디ינו סט של אלף דוגמאט של קטעי אוזני
כ절차ל ידוע כדי מי ההדובר (כל ויקטור כדה הוא hakאואר 1000)

\[
\{m_k\}_{k=1}^{N_m} \quad \text{and} \quad \{f_k\}_{k=1}^{N_f}
\]

sortBy לייניארי: הבינ '..', הזחיות X (שוב, ויקטור בהאואר 1000), הדורך
לקבוץ את מי הדובר תיעשה "", הבנוני (שלילי – גבר, חיוני – אישה)

\[
\text{sign}(w^T x - b)
\]

המשימה שלפלגיפה: מציינת הפרמטרים \(\{w\}_{-6} \text{ לקבצל סיווג מדויק.}
דוגמה 5 – סיווג – התלולה ליניארית

ה브יטוי \(\mathbf{b}^T \mathbf{x} \) המוביל לתלולה של הנקודה \(\mathbf{x} \) לזרז הממשיים של התלולה \(B \). \(c \) בחלקה \(\mathbf{f}_k \) ובחלקה \(\mathbf{f}_{-k} \). המзолот \(\mathbf{w} \) של \(\mathbf{b} \) לשימוע התלולה.

הקטור \(\mathbf{w} \) של \(\mathbf{w} \) לשימוע בתלולה.
דרומה 5 – סיווג – שיטת FLD

\[
\sum_{k=1}^{N_f} \sum_{j=1}^{N_f} (w^T f_k - w^T f_j)^2 + \sum_{k=1}^{N_m} \sum_{j=1}^{N_m} (w^T m_k - w^T m_j)^2
\]

\[
\sum_{k=1}^{N_f} \sum_{j=1}^{N_m} (w^T f_k - w^T m_j)^2
\]

נרצה כיון הטלת \(w \)
שיצמצם את כל חברי הקבוצה האדומות (כחולות) לקסט كانوا על ציר התטלת, בדמשק
שהאדומים והכחולים מתחלקים כל האפרפר
זה מדא
Dowaha 5 – Siyoo – Shitse

\[
\sum_{k=1}^{N_t} \sum_{j=1}^{N_f} (w^T f_k - w^T f_j)^2 + \sum_{k=1}^{N_m} \sum_{j=1}^{N_m} (w^T m_k - w^T m_j)^2 \rightarrow \min
\]

\[
\sum_{k=1}^{N_f} \sum_{j=1}^{N_m} (w^T f_k - w^T m_j)^2
\]

\[
\begin{align*}
\mathbf{w}^T & \left[\sum_{k=1}^{N_t} \sum_{j=1}^{N_f} (f_k - f_j)(f_k - f_j)^T + \sum_{k=1}^{N_m} \sum_{j=1}^{N_m} (m_k - m_j)(m_k - m_j)^T \right] \mathbf{w} \\
& = \mathbf{w}^T \mathbf{R} \mathbf{w} \\
& \rightarrow \min
\end{align*}
\]

\[
\mathbf{w}^T \left[\sum_{k=1}^{N_f} \sum_{j=1}^{N_m} (f_k - m_j)(f_k - m_j)^T \right] \mathbf{w}
\]

\[
\mathbf{A} \mathbf{x} = \lambda \mathbf{x}
\]
জোগামা 6 – খেপনা

בגייהנו תמנו, אנו רוזים לשונו את ייוונה
cr שטוווזפ ותחפור لماבקי מוספרם
הנרא היא ציוצרי.

המקבל את התמונה יבע פעולה פעונה
ייקבל את התמונה המקוירה. אני ذה
עבדר?
דוגמה 6 – ה brunette – העונת הבסיסי

המטציה הכוללת קטע של 10,000 פיקسلים

מתיצת האקריאט בגודל של 10,000 פיקסל

טמונית יינה טג של מפסירפם - מהגמה שלונה

בגודל של 100 עד 100 פיקסל

ולכל הערני

הבטсим ייה לעכפי את המטציה A בנ распол

אקריאט A בגודל של 10,000 על 10,000 פיקסל

=
 mMapa 6 – הצבת - השעון

1. בחינתה הקטורת המבוקדAx = b

2. המטריצה המבוקדת A היא עליונה

למצאת את x וה פתרון פتصر של

מערבות משוחחים.

3. בפעולה, נקבל את b עם העגלות.

ולכן פתרון המשמעות שהוא
לתמונה על שגיאות – أي
נשלט בתבנית הושגיה?

א- אם נ疝ה לקודד את x ע"י

פחות מ- 10,000 מופעים

ב- האם מסתבר שדה

אפסרי...

Ax = b
ホームページ 7 – תיעוצו בווינר

בעבר הרחוק (עדامية שנה, ה-90),
היתאמות ביניהםميلות החיפוש והמילים
בاقتירם האפזרים. זה الهاتف לתחזוקה
לקיחות כלים שלרוב הוחפו בתוכזאת
אטרים חסרין חשים.

הפתולים לענה 23 נגבה בעובדות המasive
של לאוי פגי וורצאי ברין לשנת 1994
בסטנפורד – הרעיון他说.PageRank
לדרג את כל האטרים ברשת לפי
خشabilité ואז בהבאת תוצאת חיפוש
לחקת ידיה של חבושון. איך זה עוד?
דגמה 7 – העיקור

ב chrono 2 יש קישורים
לדפים הבאים:
www.page2.com
www.page3.com
www.page4.com

דג מוסר 2

ב chrono 3 יש קישורים
לדפים הבאים:
www.page3.com
www.page4.com
www.page1.com

דג מוסר 3

ב chrono 4 יש קישורים
לדפים הבאים:
www.page1.com
www.page3.com

באו נדרג אתórioים אלו לפי חשיבותם
דרור האתגר

$$X_1 = \frac{1}{N_2}X_2 + \frac{1}{N_3}X_3 + \frac{1}{N_4}X_4$$

הheiten הבסיסים מאחורי השואה 2:
- אטר дирוג גובה יוצר את פוניים אלו источים.
- אטר המדורג גובה "משרה" מח사이트 על אלו שלריםハウス ומפות.
- "ועצמת" הקישור היחסית הפוכה למספר הקישורים באיתר.
דוגמה 7 –钰אור גרפ' – PageRank –钰אור גרפ'
\[x_1 = \frac{1}{1} x_3 + \frac{1}{2} x_4 \]
\[x_2 = \frac{1}{3} x_1 \]
\[x_3 = \frac{1}{3} x_1 + \frac{1}{2} x_2 + \frac{1}{2} x_4 \]
\[x_4 = \frac{1}{3} x_1 + \frac{1}{2} x_2 \]
$x_1 = \frac{1}{3} x_3 + \frac{1}{2} x_4$

$x_2 = \frac{1}{3} x_1$

$x_3 = \frac{1}{3} x_1 + \frac{1}{2} x_2 + \frac{1}{2} x_4$

$x_4 = \frac{1}{3} x_1 + \frac{1}{2} x_2$

$A = \begin{bmatrix} 0 & 0 & 1 & 0.5 \\ 0.33 & 0 & 0 & 0 \\ 0.33 & 0.5 & 0 & 0.5 \\ 0.33 & 0.5 & 0 & 0 \end{bmatrix}$

$Ax = \lambda x$

$A x_1 = \lambda x_1$

$A x_2 = \lambda x_2$

$A x_3 = \lambda x_3$

$A x_4 = \lambda x_4$

$\begin{align*}
x_1 &= 0.387 \\
x_2 &= 0.129 \\
x_3 &= 0.290 \\
x_4 &= 0.194
\end{align*}$

אגב, זה ה-

λ
לسيرו

התקומת אלו עמי נכסים, NLA
עשיר בכלים וברינווט, וה쇼ב
מואד למגון רוח ישומם.

ביסודה הדבירה נסוח בפיטוח
אלגוריתמים לפתרון של מרוכזות
משואות לייניאריות, קיים פתרון
בمكنו שאלי פתרון מדויק,
וفريق עצמי של טריציה.

הדבר לא הזכר – לכלים שלמדה ערך חשוב גמ בשתי, זירות
אחרות השובות – (א) אופטימיזציה נמרית, (ב) פתרון 디קרציה
shallמדו דייפורציאליות רגילים וחליקות. נושאים אלו בוליעי
השיבות רהב בפי עומט, אךحم לא יזומ בקורה צח.
לסיכום

יודוט
الألغبرة
הליניירת

真正
ишומימ
עכשווים