תרגול 4 לוגה
נושאי החורגל

1. שורשים מרובי
2. דיוק בר השגה
3. אנטרפולייזה
4. גרמ
5. מכפלה פנימית
6.اورחרונליזה
7. שיטה Gram-Schmidt
8. מינימום רובע

נורמת החורגל

2
1. שורשים מרובים

כששורש הווה מרובה, ריווח מתקדם עם סדר 1 (אם מתקדם), ולא 2 כמו עבור שורש פשוט.

אינטואיציה: נתכל על הפונק'

\[
.f_1(x) = (x - 5)^2, f_2(x) = (x - 5)^4
\]

הוא שורש מרובה של \(f_1 \), \(f_2 \).

ניתן לראות שאם נבחר \(x_0 = 5.5 \) אזי המתקדמות לשורש של \(f_1 \) מдержива יוצר במשווה

ולэтому המתקדמות לשורש של \(f_2 \) לכל שורשים גובה יוצר, ה"שופות" יוצר

בatorio השורש, לכל נדישה יוצר איטרציות.
1. שורשים מרובים

הוגמה: נתן המשוואה \(f(x) = x^4 - 4x^2 + 4 = 0 \)

פונק' האיטרציה של שיטת NR: \(\varphi(x) = x - \frac{x^4 - 4x^2 + 4}{4x^3 - 8x} = \frac{3x^2 + 2}{4x} \)

נבצע מס' איטרציות, נבחרים מס' איטרציות, \(x_0 = 1.5 \):

<table>
<thead>
<tr>
<th>(x_n)</th>
<th>(\frac{x_{n+1} - x_n}{x_n - x_{n-1}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.500000000000000</td>
<td></td>
</tr>
<tr>
<td>1.458333333333333</td>
<td></td>
</tr>
<tr>
<td>1.436607142857143</td>
<td>0.521428571428571</td>
</tr>
<tr>
<td>1.425497619417562</td>
<td>0.511342448725911</td>
</tr>
<tr>
<td>1.419877921683828</td>
<td>0.505845076460452</td>
</tr>
</tbody>
</table>
1. שורשים מרובים

ע"פ ההגנוז השני של המשמש ממיל 30 ניגון למעט שהATTERN נגרם בקובוצת התכונשות לקובץ התכונשות הולו של כל ניגון

PJ = 0.5

וכן שNR התכונשות באור העניין, אופי של הטיסים שפרוזור בקורב נרחב מרחב

מהו הריבוי? עבור NR מדריך

עבור עבור מדריך נ⇢ 1

C = 1 − q

C = 1 − α

לכן נוכל להעריך במשולש וראש הריבוי:

q = \frac{1}{1−C} = 2

1) f(x) = x^4 − 4x^2 + 4
1. שורשים מוגבלים

אופשר גמ' ליגור את ג'י לחרואות ע"פ משפט סדר ההתכוננות שבוחואות הסדר הוא 1:

$$\varphi'(x) = \frac{6x \cdot 4x - 4(3x^2 + 2)}{(4x)^2} = \frac{12x^2 - 8}{16x^2} = \frac{3}{4} - \frac{1}{2x^2}$$

אופשר לחרואת ששרש המשוואה הם $\pm \sqrt{2}$ (כל אחד מרבויי 2)phemאבחרים:

$$\varphi'(\pm \sqrt{2}) = \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \neq 0$$

לכן לפי משפט סדר ההתכוננות הסדר הוא 1.
דוקטרינר של השגה

אנון עסק מערכי במציאת שורש לאשכולת \(f(x) = 0 \) \(\forall x \in \text{בירוור סדרת איטרציות} \{x_n\} \).

כיצד נחליט האם \(x_n \) קרוב מסייק לשורש \(\alpha \) כלומר, האם ביצענו מסייק איטרציה? נוכל להגדיר \(\delta > 0 \) קטן, וכאשר \(f(x_n) \) \(|f(x_n)| < \delta \) \(\forall x_n \) \(\text{גיון מדגמי קרוב מסייק לשורש} \) \(\text{לשורש} \ (\text{יש لهذه קרוב מסייק} \) \(\text{לשורש} \ (\text{אינו מדגמי} \) \(\text{קרוב מסייק לשורש} \) \(\text{לשורש} \).
דיוק בר השגה

משם – דיוק בר השגה: אם מתכניים התנאים הבאים:

1. הפונק' \(f \) מחושבת בסביבת השורש \(\alpha \) עם שגיאה מוחלטת הבסיסה \(\delta \).

2. השורש \(\alpha \)униáo מרבני.q.

אז ניתן רק לומר כי מתקיים \(x_n - \alpha \leq \epsilon_\alpha \) כאשר:

\[|x_n - \alpha| \leq \epsilon_\alpha \]

אנו הום תחתיו לער \(x_n \) מוחלט של \(x_n \) בסביבת השורש \(q \).

\[\epsilon_\alpha = q \sqrt{\frac{\delta \cdot q!}{|f(q)(\alpha)|}} \leq q \sqrt{\frac{\delta \cdot q!}{M_q}} \]

הנ hondaה: \(\epsilon_\alpha \) יקרוי דיוק בר השגה.

\[\epsilon_\alpha = \frac{\delta}{|f'(\alpha)|} \leq \frac{\delta}{M_1} \]

麦克רה פרטי: עבור שורש פשט \(q = 1 \) מתכניים (1).
2. דיווק בר השגה
dגשים

• ניחן והешוער את מידה והמשנה להעריך את \(\alpha \) בגישה ذات "י" שימור בשיטת אייטרציה.

אстрелציה.

ניתן למצוא את הריבוי \(q \) על ידי הערכת סדר \(p \) שלを使って התכנסות של שיטת NR (C) לקובוע ההתקפלות של שיטת NR:

\[
q = 1, \quad p = 2
\]

אם הרו שמדובר בשורש פשוי לכל \(q \) \(q \) ומקדם יוכל להזינו את \(C = 1 - \frac{1}{q} \) \(q \) אסי מחסית \(p = 1 \)
2. דירוק בר השגה

הסבר:
כיוון שהפ' מחושבת עם שגיאה מוחלטת חסומה על"י δ, אנו למעשה מחשבים פ' מקורבים, לכל היותר שنمץuja हा $\tilde{\alpha}$ הממשטーム, שאלו הואصادנו לכולים לדבשיה היא ε_α ויהיו לכל היזויים $|\alpha - \tilde{\alpha}|$ לכל היזויים ε_αumniצ'a של $\tilde{\alpha}$.
יתכן בר השגה

 doubted example: \(f(x) = x^2 - 3x + 2 \) בקטע \([1.8, 2.5]\) לQUENCE היא שורש והמחשב מסוגל לחשב את הפונקציה بدויין של 7 ספורות דצימליות. באיזו דויין ניתן למטרה את השורש?

\[f'(x) = 2x - 3 \]

 Wrestle that \(f'(1.8) \neq 0 \)

 לפונקציה מתמידה בקטע נתון, לפונקציה שורש מסוים בקטע.

 \[\epsilon_{\alpha} \leq \sqrt{\frac{\delta \cdot q!}{M_q}} \]

\[\epsilon_{\alpha} \leq \frac{0.5 \cdot 10^{-7}}{0.6} \approx 0.8 \cdot 10^{-7} \]
ディクブラשה

máticos מתוקים, $\delta < \epsilon\alpha$, למה לא נוכל לחסם את המרחק של x_n מ-α עם δ?

והתרשים מתאר את התיאוריה של $\epsilon\alpha$ מתוקים ל幸せ, בעד δ מתוקים ל幸せ x.

והתרשים משמש מודל מ岫 של זה.

אמנם מתוקים $\delta < \epsilon\alpha$, או נוכל לראות כיแก

$[\alpha - \delta, \alpha + \delta]$ מתוקים כלים ל Bucca

$|f(x_n)| \leq \delta$ לכל α נוכל להביס $\epsilon\alpha$ כך ענ$\epsilon\alpha$ נוכל להביס $\epsilon\alpha$ נוכל להביס x_n כיนาม בסיבת δ של α, או נוכל להביס α נוכל בסיבת x_n כיนาม בסיבת δ של α.
디וק בר השגה

הכנתה: נתונה \(f(x) = x(x - 2) + 1 \). המחשב מטוען להשבת את הפונקציה بدינוק של 8 ספרות.

ձיミיליה. רוצים להגיגיג לדינוק של 7 ספרות דצימליות לפקוטון בושאוי. האם זה אפשרי?

פתרון:

וע"פ הנתונים מתקיים \(\delta \leq 0.5 \cdot 10^{-8} \).

בנוסף מתקיים \(f'(x) = 0 \) לכל \(x \).

\(f''(x) = 2 \) לכל \(x \).

לכן השורש \(\alpha = 1 \) מאריך 2 נקבל: \(\varepsilon_{\alpha} \leq \sqrt{\frac{\delta \cdot 2!}{M_2}} = \sqrt{\delta} = 0.707 \cdot 10^{-4} \).

ניתן לראהות שלא נ涫ן דינוק לדינוק של 7 ספרות דצימליות.
2.دينור בר השגה

פתרון לבעיה:
נוכל לעבור למושואת שקולות שבורה השורש לא מרובה:

\[u(x) = \frac{f(x)}{f'(x)} = 0 \]

הסבר:
בהינתן פונק' \(f(x) \) שבורה השורש \(\alpha \) הוא מריבוי \(q \geq 2 \) נוכל להציג את הפונק' בז緩 הבנה:

\[f(x) = (x - \alpha)^q \cdot g(x) \]

כאשר \(g(x) \) היא פונק' סינויגולרית של \(\alpha \).

נсим לה גמ' כי בפונק' מתכני \(g(\alpha) \) \(\neq 0 \), אחרת היייו של השורש \(\alpha \) נהיי להפתוח \(q + 1 \).
2. דירוג בר השגה

נפחה את הביטוי:

\[u(x) = \frac{f(x)}{f'(x)} = \frac{(x - \alpha)^q \cdot g(x)}{q \cdot (x - \alpha)^{q-1} \cdot g(x) + (x - \alpha)^q \cdot g'(x)} = \]

נחלקים בביטוי \(x - \alpha \):

\[(x - \alpha)^{q-1} = (x - \alpha)^{q-1} \cdot h(x) \]

כבלנו כי \(\alpha \) הוא שורש פשטי.
1. \(\varepsilon_\alpha \leq \frac{q \cdot \delta \cdot q!}{M_q} \)
2. \(\delta \leq 0.5 \cdot 10^{-8} \)

Define:

\[u(x) = \frac{f(x)}{f'(x)} = \frac{x - 1}{2} \]

Hence:

\[u'(x) = 0.5 \]

Thus, \(u'(x) = 0.5 \), for all:

\[\varepsilon_\alpha \leq \frac{\delta}{M_1} \leq \frac{0.5 \cdot 10^{-8}}{0.5} = 10^{-8} < 0.5 \cdot 10^{-7} \]

For all calculations, 7 significant digits are considered.
3. אינטרפולציה

מוטיבציה:

אינטרפולציה היא שיטהלקירוב פונקציה, מאפשרת להעריך את הפונק' בנקודות ביקוש שיאינן נתונות.

נניח שנחトーוהמפה' הבאה:

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>0</th>
<th>0.8415</th>
<th>0.9093</th>
<th>0.1411</th>
<th>0.7568</th>
<th>0.9589</th>
<th>-0.2794</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

נ зрצת להעריך את הפונק' בנק' \(x = 2.5 \).
3. אינטרפולציה

.setStrokeStyle(2, 14, 14)

 clientId: 0

мотויב요:

הפיתרו להשב את מס' דרכיס לערך ואת:

בכל אחד מהקירובים ייחסו נקבל הערכה שווה עvero \(x = 2.5 \).
3. אינטרפולציה

מהו ש lorem ב fonteer פונקציות?

ההדרה המביעה: נתונה פונקציה \(f(x) \) שนมדה ב- \((N+1) \) נקודות \(\{x_i\}_{i=0}^N \).

נתונה גם קבוצה של \((N+1) \) פונקציות \(\{\phi_i(x)\}_{i=0}^N \) שניתנות לחישוב בכל נקודה.

נרצה לייצר פונקציה \(f^*(x) \) שÙי של \((N+1) \) הפונקציות הנתונות \(\{f_i(x)\}_{i=0}^N \) שמתאימה לכל \(x_i \):

\[
f(x_i) = f^*(x_i)
\]
א. אינטרפולציה

איך מוצאים את \(f^*(x) \)?

ניקחנו כי \(f^*(x) \) התђה \(f(x) \) לכל \(x \) בלעדים \(c \) כל \(f^*(x) \) הבוחה של \(f(x) \) לכל \(x \) בלעדים \(c \).

לכן קיימת קבוצה של מקדמים \(\{c_i\}_{i=0}^{N} \) כך שמתקיים:

\[
f^*(x) = \sum_{i=0}^{N} c_i \cdot \phi_i(x) = c_0 \cdot \phi_0(x) + c_1 \cdot \phi_1(x) + \cdots + c_N \cdot \phi_N(x)
\]

קבוצה הפונקציות \(\{\phi_i(x)\}_{i=0}^{N} \) נתונה לנו, לכן כל שביל נוכל לעיין למען \(f(x) \) בקבוע המקדים \(\{x_i\}_{i=0}^{N} \) לכל \(x \) בלעדים \(f(x) = f^*(x) \).

דרשינו שלカメימי \(N + 1 \) מספרים \(\{x_i\}_{i=0}^{N} \) לכל \(x \) בלעדים \(\{f_i\}_{i=0}^{N} \).

משוואה:

\[
f^*(x_0) = c_0 \cdot \phi_0(x_0) + c_1 \cdot \phi_1(x_0) + \cdots + c_{N-1} \cdot \phi_{N-1}(x_0) + c_N \cdot \phi_N(x_0) = f(x_0)
\]

\[
f^*(x_1) = c_0 \cdot \phi_0(x_1) + c_1 \cdot \phi_1(x_1) + \cdots + c_{N-1} \cdot \phi_{N-1}(x_1) + c_N \cdot \phi_N(x_1) = f(x_1)
\]

\[
\vdots
\]

\[
f^*(x_N) = c_0 \cdot \phi_0(x_N) + c_1 \cdot \phi_1(x_N) + \cdots + c_{N-1} \cdot \phi_{N-1}(x_N) + c_N \cdot \phi_N(x_N) = f(x_N)
\]
3. אינטרפולציה

אם נציב לייזוג מטריציוני, נקבל מערכת משוואות מחזורית:

\[Ac = f \]

\[
\begin{bmatrix}
\phi_0(x_0) & \phi_1(x_0) & \ldots & \phi_N(x_0) \\
\phi_0(x_1) & \phi_1(x_1) & \ldots & \phi_N(x_1) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_0(x_N) & \phi_1(x_N) & \ldots & \phi_N(x_N)
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_N
\end{bmatrix}
=
\begin{bmatrix}
f(x_0) \\
f(x_1) \\
\vdots \\
f(x_N)
\end{bmatrix}
3. אינטרפולציה

מה קורה אם בקבוצת הפונקציות \(\{\phi_i(x)\}_{i=0}^N \) יש פונקציות \(T \) על \(\phi \)?

נניח despreים את \(T \) לא תורמות לגב Ini (\(f^*(x) \)).

נלמד בהמשך איך לבחור פונקציה חלופית, או איך לבנות קבוצת פונקציות \(T \).

אם נניחלבנות את \(f^*(x) \) עם פותח מ- \((N + 1) \) פונקציות?

לעornecedor. יひとり משהואות של נטלי שללurrection.
אינטרפולציה

 данו והם מסתיימים בנקודות ללא נקודה,

 לכל גמ \(f(x) \) נינוח להישוב בכל נקודת, בניגוד ל- \(f(x) \).

 ההגדה סאמר הוז-good נקודת, כי אם הניגוד של ת הצדדים לקב- \(N + 1 \) הנקודות הנתונות,

 אז \(f(x) \) עשה את העבורה.

\[
\begin{bmatrix}
\phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_N(x_0) \\
\phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_N(x_1) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_0(x_N) & \phi_1(x_N) & \cdots & \phi_N(x_N)
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_N
\end{bmatrix}
=
\begin{bmatrix}
f(x_0) \\
f(x_1) \\
\vdots \\
f(x_N)
\end{bmatrix}
\]
דוגמה: קרבו את הפונקציה \(f(x) = x^2 \) באמצעות הפונקציות \(\sin(\frac{\pi}{2}x), \cos(\frac{\pi}{2}x), 1 \).

בנוסף \(\{0,1,2\} \).

פתרון:
נניח לראות שאינו בדוקים הביצוע שנגרנים, יש לנו פונקציה \(f(x) \) שמנדריה ב-3 נקודות: \(\{0,1,2\} \).

כמם כל נקודת-svg כיוון שהבקבוק של 3 פונקציות שנמצאותalahים בין הבול בנוקה.

לכל נקודת \(x \) \(f^*(x) \) לכל בעיה אט \(0 \).

כלعلליו לממדים האט קבוצת הממדים \(\{c_i\}_{i=0}^N \).
3. אינטרפולציה

dוגמה: קרוב אט הפונקציה \(f(x) = x^2 \) באמתות הפונקציות \(\{\sin\left(\frac{\pi}{2}x\right), \cos\left(\frac{\pi}{2}x\right), 1\} \) בנקודות \(\{0, 1, 2\} \).

פתרון:

נבנו את מטריצת המשוואות המטריציונית:

\[
\begin{bmatrix}
\phi_0(x_0) & \phi_1(x_0) & \phi_2(x_0) \\
\phi_0(x_1) & \phi_1(x_1) & \phi_2(x_1) \\
\phi_0(x_2) & \phi_1(x_2) & \phi_2(x_2)
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
f(x_0) \\
f(x_1) \\
f(x_2)
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
0 \\
1 \\
4
\end{bmatrix}
\]
3. אינטרפולציה

פתור:
נקבל את משוואות הבאות:

\[
\begin{align*}
c_1 + c_2 &= 0 \\
c_2 &= -c_1 \\
c_2 &= 2
\end{align*}
\]

\[
\begin{align*}
c_0 + c_2 &= 1 \\
c_0 &= 1 - c_2 \\
c_0 &= -1
\end{align*}
\]

\[
\begin{align*}
c_2 - c_1 &= 4 \\
-2c_1 &= 4 \\
c_1 &= -2
\end{align*}
\]

לכן קבלנו:

\[f^*(x) = -\sin\left(\frac{\pi}{2}x\right) - 2 \cdot \cos\left(\frac{\pi}{2}x\right) + 2\]
3. אינטרפולציה

השוואה גרפית בין הפונקציות:

בשיטה האינטרפולציה אנו בונים את \(f^*(x) \) שיאו קרוב לפונק' \(f(x) \) הנחיה (4)

איך אנו מודדים את איזochen הקירוב?

נגדרי את פונק' השגיאה של הקירוב: \(e(x) = f(x) - f^*(x) \).

נרצה כי \(e(x) \) יהיה הקטן ביותר האפשרי.

ישנן דרכים רבות להשוות בין הפונקציות, או "למדוד" את \(e(x) \) הדריכים שבין פונקציות האפWEBPACK-0.jpg זרות.

מתקייחות של מדד שנקרא נורמה.

נרמה: פункциיה הופעלת על פונקציות: לכל פונק' הנורמה מתאימה מספר - שילילי שווה או מאוחר יותר.

נרמה היא ריכי של קיימים של פונקציה כדי לחייאה נורמה, או לא להתמקם בוоч.

ישב נורמה של נורמה של נורמה - אנוי במקדמת בשניהם 메יים.
נורמה
בкурס נתייחס למקרה רציף ומקרה בדיד. במקרה הרציף אנו מודדים פונקציה בין מודדים פונקציה בتكامل של יום.

ובמקרה המђידים אנו מודדים פונקציות בتكامل של יום.

נורמה אוקלידית:

הנורמה האוקלידית (או נורמה 2) המבוססת על פונקציות בקסטע \([a,b]\), עם פונקציה \(e\):

\[\|e\|_2 = \sqrt{\int_a^b e^2(x) \cdot w(x) \, dx} \]

משקל \(w(x)\) חובה בקסטע מוגדרת "\(w(x)\) משקף \(w(x)\) ייחודי בקסטע מוגדר \(w(x)\)

הנורמה האוקלידית (או נורמה 2) המבוססת על פונקציות \(e\) הנמצאות לחרושת בקסטע \(x_i, x_j\) \(i=0\):

\[\|e\|_2 = \sqrt{\sum_{i=0}^{N} e^2(x_i) \cdot w(x_i)} \]
נורמת מקסימום: נורמת המקסימום (או נורמה אינסופית) הרציפה של פונקציה בקטע \([a,b]\) מגדירה \(\|e\|_\infty = \max_{x \in [a,b]} (|e(x)|)\).

נורמת המקסימום (או נורמה אינסופית) הבדידת של פונקציה \(e\) הבינונית של בתים \(\{x_i\}_{i=0}^{N}\) מגדירה \(\|e\|_\infty = \max_{i=0,1,\ldots,N} (|e(x_i)|)\).
4. Norms

Example: Let $w(x) = 1$ and the function:

$$e(x) = \begin{cases} 0, & |x| > \frac{1}{k^2} \\ k^3x + k, & -\frac{1}{k^2} \leq x < 0 \\ -k^3x + k, & 0 \leq x \leq \frac{1}{k^2} \end{cases}$$

Find the Euclidean and maximum norms.

Solution:
The maximum of the function $e(x)$ is obtained for $x = 0$, therefore $e_\infty = k$.

1) $\|e\|_2 = \sqrt{\int_a^b e^2(x) \cdot w(x) \, dx}$
2) $\|e\|_\infty = \max_{x \in [a, b]} (|e(x)|)$
נורמה

פתרון:

נחשב את הנורמה האוקלידית:

\[e^2 = \| f \|_2^2 = \sqrt{\int_a^b e^2(x) \cdot w(x) \, dx} \]

1) \[\| e \|_2 = \sqrt{\int_a^b e^2(x) \cdot w(x) \, dx} \]

2) \[\| e \|_\infty = \max_{x \in [a,b]} (|e(x)|) \]

למרות שהנורמה האוקלידית בכולא אינו תלויה ב-\(k \), אם ברצוננו להקטין את \(k \) על מנת להקטין את השגיאה,\\
自然保护 \(k \) מה שגיאה מינימלית?

אם ברצוננו להקטין את \(k \) על מנת להקטין את השגיאה,\\
自然保护 \(k \) \(k \) וייל הגרומתי,\\
בכל מקרה חיה חיה ב-\(k \).
5. מכפלה פנימית

המכפלה הפנימית הרציפה בקטע \([a,b]\) עם פ' משקל \(w(x) > 0\) מוגדרת "י:"

\[
\langle f, g \rangle = \int_{a}^{b} f(x)g(x)w(x) \, dx
\]

המכפלה הפנימית הבדידת בנקודות \(x_i\) מוגדרת "י:"

\[
\langle f, g \rangle = \sum_{i=0}^{N} f(x_i)g(x_i)w(x_i)
\]

שים לב: בסמך הרציפה והבディים פנימיים \(\|f\|_2^2\)

הערה: המושג של מכפלה פנימית הוא רחב弁וד Stück ומכפלת פנימית של מספרים של מספרים פנימיים.
5. Product Formula

Example: Compute $\langle \sin(x), x^2 \rangle$ over the interval $[0, 1]$ with weight function $w(x) = \cos(x)$.

\[\langle \sin(x), x^2 \rangle = \int_0^1 \sin(x) \cdot x^2 \cdot \cos(x) \, dx = \frac{1}{8} (2 \sin(2) - \cos(2) - 1) \approx 0.154343\]

\[w(x_0) = 1 \quad w(x_1) = 2 \quad \text{with weight function } w(x) \]

\[f(x_0) = 3 \quad f(x_1) = 2 \quad g(x_0) = 1 \quad g(x_1) = -1 \quad \text{case} \]

\[\langle f, g \rangle = \sum_{i=0}^{1} f(x_i) g(x_i) w(x_i) = 3 \cdot 1 \cdot 1 + 2 \cdot (-1) \cdot 2 = -1\]

\[\langle f, g \rangle = \int_a^b f(x) g(x) w(x) \, dx\]

\[\langle f, g \rangle = \sum_{i=0}^{N} f(x_i) g(x_i) w(x_i)\]

Example: Compute $\langle f, g \rangle$ with weight function $w(x) = \cos(x)$.

\[\langle f, g \rangle = \sigma_{i=0}^{N} f(x_i) g(x_i) w(x_i)\]
6. אורתוגונליות

הגדרה: הפונק'ים \(f, g\) נקראות אורתוגונליים ביחס למ"ס מסויים \(w(x)\) אם \(\langle f, g \rangle = 0\).

דוגמה:

האם הפונקציות \(x, x^2\) אורתוגונליות ביחס \(w(x) = 1\) בקטע \([-1,1]\)?

פתרון:

1) \(\langle f, g \rangle = \int_{-1}^{1} x \cdot x^2 \, dx = \frac{1}{4} x^4 \bigg|_{-1}^{1} = \frac{1}{4} - \frac{1}{4} = 0\).

2) \(\langle f, g \rangle = \int_{-1}^{2} x \cdot x^2 \, dx = \frac{1}{4} x^4 \bigg|_{-1}^{2} = 4 - \frac{1}{4} = \frac{15}{4}\).
6. אורתוגונליות

דוגמה: האמ汀 הפונק' \(\sin(x), \cos(x) \) א"ג עם פ' משכלי 1:

\[\{0, \frac{\pi}{4}, \frac{\pi}{2}, \pi \} \] על הרשת \(\{0, \frac{\pi}{4}, \frac{3\pi}{4}, \pi \} \) על הרשת

פתרון: נחשב את המ"פ הבדריה:

\[\langle \sin(x), \cos(x) \rangle = \sin(0) \cos(0) + \ldots + \sin(\pi) \cos(\pi) = 0 \] 2

לכל א"ג. \(\langle \sin(x), \cos(x) \rangle = \ldots = \frac{1}{2} \neq 0 \) 2

לכל א"ג. \(\langle \sin(x), \cos(x) \rangle = \ldots \neq 0 \) 2

1) \(\langle f, g \rangle = \int_a^b f(x)g(x)w(x) \, dx \)

2) \(\langle f, g \rangle = \sum_{i=0}^{N} f(x_i)g(x_i)w(x_i) \)
6. אורתוגונליות

דוגמה: האם קיימת פ' משקל שביחס אליה הפ' \(\sin(x), \cos(x) \) א"ג בקטע \([0,1]\)?

פתרון: שתי הפ' \(\sin(x), \cos(x) \) חיוביות בקטע \([0,1]\) וmahendra מתכתי המשקל היא היחידה חיובית.

腘彼, let\'s biemor בוחק האינטגרל חיובי, let\'s האינטגרל חיובי, let\'s יוכליה חיובית

אורתוגונאליות.
Theorem: Let \(\{v_1, ..., v_n\} \) be a linearly independent set. Then, for any scalars \(c_1, ..., c_n \),
\[
c_1 v_1 + \cdots + c_n v_n = 0
\]
if and only if all the scalars \(c_1, ..., c_n \) are zero.

The method of Gram-Schmidt:
Given a set of linearly independent vectors \(\{f_1\} \), we wish to construct an orthonormal set \(\{\phi_i\} \).

The method of Gram-Schmidt:
1. \(\phi_0 = f_0 \)
2. \(\phi_1 = f_1 - \frac{\langle f_1, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle} \phi_0 \)
3. And so on.

And we check whether \(\phi_0, \phi_1 \) are orthogonal:
\[
\langle \phi_1, \phi_0 \rangle = \langle f_1 - \phi_0 \frac{\langle f_1, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle}, \phi_0 \rangle = \langle f_1, \phi_0 \rangle - \frac{\langle f_1, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle} \langle \phi_0, \phi_0 \rangle = 0
\]
7 שיטה

$$\phi_2 = f_2 - \phi_0 \frac{\langle f_2, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle} - \phi_1 \frac{\langle f_2, \phi_1 \rangle}{\langle \phi_1, \phi_1 \rangle}$$

ובאופן כללי:

$$\phi_i = f_i - \phi_0 \frac{\langle f_i, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle} - \cdots - \phi_{i-1} \frac{\langle f_i, \phi_{i-1} \rangle}{\langle \phi_{i-1}, \phi_{i-1} \rangle}$$
רושמה: בנם בסיס אורתוגונאללי "ס הפונקציות \(\cos(x), e^x, x \) בקטע \([0,1]\) עם פ' משקל 1

פתרון:

\[\phi_0 = f_0 = x \]

\[\langle f_1, \phi_0 \rangle = \int_0^1 e^x \cdot x \, dx = (x - 1)e^x \bigg|_0^1 = 1 ; \langle \phi_0, \phi_0 \rangle = \int_0^1 x^2 \, dx = \frac{1}{3} \]

\[\phi_1 = f_1 - \phi_0 \frac{\langle f_1, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle} = e^x - x \frac{1}{1/3} = e^x - 3x \]

\[\phi_2 = f_2 - \phi_0 \frac{\langle f_2, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle} - \phi_1 \frac{\langle f_2, \phi_1 \rangle}{\langle \phi_1, \phi_1 \rangle} = \]

\[= \cos(x) - x \frac{\int_0^1 x \cdot \cos(x) \, dx}{\int_0^1 x^2 \, dx} - (e^x - 3x) \frac{\int_0^1 \cos(x) \cdot (e^x - 3x) \, dx}{\int_0^1 (e^x - 3x)^2 \, dx} = \ldots \]
הгранич המביעה: נתונה פונקציה \(f(x) \) שنموذج ב-(\(N + 1 \)) נקודות \(\{x_i\}_{i=0}^N \)掸מודה ב-\(N + 1 \) נקודות \(\{\phi_i(x)\}_{i=0}^N \) פונקציות של \(N + 1 \) פונקציות \(\phi_i(x) \) ש novitàות להוושב בכל נקודת \(N \) פונקציות \(f^*(x) \), ברצון לשיער \(f^*(x) \), המסמל \(N + 1 \) של \(f^*(x) \), \(f(x) \) \(\{x_i\}_{i=0}^N \) בכלי \(f(x_i) = f^*(x_i) \)
 migrated to Hebrew: אֵלֶּה מְצוּמָת וְיַבָּאָה?

HOOK - אינטֵרִפּוֹלְצִיה: איך מוצאים את \(f^* (x) \) ?

בהעתק כאן \(f^* (x) \) התובה \(\text{לק} \), כל קרינת הקבוצה שלמקדמים \(\{ c_i \}_{i=0}^N \) כר שמתכינים:

\[
f^* (x) = \sum_{i=0}^{N} c_i \cdot \phi_i (x) = c_0 \cdot \phi_0 (x) + c_1 \cdot \phi_1 (x) + \cdots + c_N \cdot \phi_N (x)
\]

קבוצה הפונקציות \(\{ \phi_i (x) \}_{i=0}^N \) הנתונה לנו, לכן כל שבילינו לפיlando היא את הקבוצה המקדמים.

דרשנו שיתמכים \(N+1 \) פעמים \(f (x_i) = f^* (x_i) \) לכל נקודת \(\{ x_i \}_{i=0}^N \), בכל עלים \(N \) לקחים (1 modelos):

\[
f^* (x_0) = c_0 \cdot \phi_0 (x_0) + c_1 \cdot \phi_1 (x_0) + \cdots + c_{N-1} \cdot \phi_{N-1} (x_0) + c_N \cdot \phi_N (x_0) = f (x_0)
\]

\[
f^* (x_1) = c_0 \cdot \phi_0 (x_1) + c_1 \cdot \phi_1 (x_1) + \cdots + c_{N-1} \cdot \phi_{N-1} (x_1) + c_N \cdot \phi_N (x_1) = f (x_1)
\]

\[
\vdots
\]

\[
f^* (x_N) = c_0 \cdot \phi_0 (x_N) + c_1 \cdot \phi_1 (x_N) + \cdots + c_{N-1} \cdot \phi_{N-1} (x_N) + c_N \cdot \phi_N (x_N) = f (x_N)
\]
8. מיניימום ריבועים

tецורת - אינטרפולציה:

אם будיו לייצוג מטריציוני, נקבל מערכת משוואות הנקראת ה-

\[
\begin{bmatrix}
\phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_N(x_0) \\
\phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_N(x_1) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_0(x_N) & \phi_1(x_N) & \cdots & \phi_N(x_N)
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_N
\end{bmatrix}
=
\begin{bmatrix}
f(x_0) \\
f(x_1) \\
\vdots \\
f(x_N)
\end{bmatrix}
\]
חתירת הביצוע: נתונה פ\(f(x) \) וירש לק.erb אוחזת \(f^*(x) \) שראה ח.ל של \(f(x) \)
כלומר מתקיים:
\[
 f^*(x) = \sum_{i=0}^{n} c_i \cdot \phi_i(x) = c_0 \cdot \phi_0(x) + c_1 \cdot \phi_1(x) + \cdots + c_n \cdot \phi_n(x)
\]
מתי נ사מש במינימום ריבועים ולא באינטרפולציה?

ישג שים שני מקרים:
• המקרה הרציף
• המקרה הבדיד
המקרה הרציף: נרצה למצוא \(f^* \) שתחמוצר את הנורמה האוקלידיית המריציפה על \(f \) השגיאה.

\[
\sup_{x \in [a,b]} |f(x) - f^*(x)| = \min
\]

REFERENCES: אוסט וולאה, חיבור קצרצרו \(w(x) \) במקצת \(e(x) = f(x) - f^*(x) \) בקטע \([a,b] \) עם פ' משקל \(w(x) \).

\[
\|e\|_2 = \sqrt{\int_a^b e^2(x) \cdot w(x) \, dx}
\]

1) \(\|e\|_2 = \sqrt{\int_a^b e^2(x) \cdot w(x) \, dx} \)

8. מגדירים ריבועים

שנימש אופייני: חישוב הפ' קשה מדי, לכן ממקרים את \(f \) פונקציות \(\phi_i(x) \) \(n \) ניתנות לחישוב ביתר קלות.

\(\phi_i(x) \) \(i = 0 \) קיים מקרבים את \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \) לכל \(n \) ניתנות לחישוב בין \(f \)させて頂ון של הקצה של הקცוור של הקצט של הקц
8. מיניימוס ריבועים

המקרה הבידוי: נתחוג נק' \(x \).

\[\{ f(x_i) \}_{i=0}^N \] \(\{ x_i \}_{i=0}^N \)

שימוש אופייני: בעיבוד תמונות, עיבוד אותיות, עיבוד תוצאות ניסוי וכדומה.

הנקודות אמורה להיוות על אותות קר (ישר, פרבולה, סינוס etc.), אבל גללו שגיאות מדידה, רעשיות וכד', כל לא נמצאות بدיקות

עדלו. זריכים למ целью את הנקודות המתייחסות לכל הנקודות. על כל אפסר לחק השיבת גולדה

יתר לנקודות מסויימות עד'' משקלות גולים יתח.
8. מיניומוס ריבועים

הזכרת: פתרון✌️ משוואות:

1. بد"כ,LEM טמ"ש ייחר עלוים מצאשרס mostraat, יהי איינסצ' פתרונות (או סופי במקהל של שדה סופי).
2. بد"כ,LEM טמ"ש אוטס מספר עלוים ומ쇼ואות יהי פתרוןych.
3. بد"כ,LEM טמ"ש ייחר משוואות מצאשרס עלוים לא יהי פתרונות.

במקהל ההבדל,هو הנעה לפתרון שמאחדים ישלוח המגブラック את f^* אָניילז' N והם מ"ש נק' הדגים.

אם $n = N$ אז הדבדים המקרה שלاعدةפשליגה ינ独一 פתרון ייחד.

מינימום ריבועים גוסקת לרוב במקרה בו $N > n$ לכלומר ייחר משוואות מצאשרס עלוים, לכלERICAN $f(x_i) = f^*(x_i)$ שתרופש למרכיב f^* dedhydro $\{c_i\}_{i=0}^N$ dedhydro $\{x_i\}_{i=0}^N$.
פתרון בעיות מינימום וריבועים:

כמו הפתרון בשיטת האינטרפולציה, גם כאן כל שיעורי ליניאריים וואז עם קבוצת המקדמים \(\{c_i\}_{i=0}^N \).

\[\|f\|_2 = \sqrt{\langle f, f \rangle} \]

נ_hi נגדי את המכפלה הפנימית בהמחם לנוסחאות האוקלידיות, כלומר

המ"פ תוגדר במكرة הרציוניאלי אזי קיים, ובמקרה הבידיד על אזורים תכודות, ובמכר - גם אזורים המשלק.

而后�ור הממוצע את גורמי השגיאה \(\|e\|_2 \) כוריש והופתרון שנועדיה השגיאה אורתוגונלית

לכל פונקציות הבסיס, קלוע המתכתיים:

\[\langle \phi_k, e \rangle = \langle \phi_k, f - f^* \rangle = 0 \]

עבור \(k \in \{0, ..., n\} \).
פתרון בעיית מינימום ריבועים:

\[\langle \phi_k, f - f^* \rangle = 0 \]

\[\langle \phi_k, f \rangle - \langle \phi_k, f^* \rangle = 0 \]

\[\langle \phi_k, f \rangle - \langle \phi_k, \sum_{i=0}^{n} c_i \cdot \phi_i \rangle = 0 \]

\[c_0 \langle \phi_k, \phi_0 \rangle + c_1 \langle \phi_k, \phi_1 \rangle + \cdots + c_n \langle \phi_k, \phi_n \rangle = \langle \phi_k, f \rangle \]
8. מיניימום ריבועים

פתרון בעיית מיניימום הריבועים:
נקבל מספר משוואות n ששטוחות:

$$c_0 \langle \phi_0, \phi_0 \rangle + c_1 \langle \phi_0, \phi_1 \rangle + \ldots + c_n \langle \phi_0, \phi_n \rangle = \langle \phi_0, f \rangle$$

$$c_0 \langle \phi_1, \phi_0 \rangle + c_1 \langle \phi_1, \phi_1 \rangle + \ldots + c_n \langle \phi_1, \phi_n \rangle = \langle \phi_1, f \rangle$$

$$\vdots$$

$$c_0 \langle \phi_n, \phi_0 \rangle + c_1 \langle \phi_n, \phi_1 \rangle + \ldots + c_n \langle \phi_n, \phi_n \rangle = \langle \phi_n, f \rangle$$

אם ננעלמים לכל מפרטים מ mình וניקבל פתרון יחיד עבור כל הממדיים $\{c_i\}_{i=0}^n$.
8 מיניומים ריבועים

פתרון בעיית מיניומים הריבועים:
אם נצעיר לייצוג מטריציוני, נקבל:

\[
\begin{bmatrix}
\langle \phi_0, \phi_0 \rangle & \langle \phi_0, \phi_1 \rangle & \cdots & \langle \phi_0, \phi_n \rangle \\
\langle \phi_1, \phi_0 \rangle & \langle \phi_1, \phi_1 \rangle & \cdots & \langle \phi_1, \phi_n \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle \phi_n, \phi_0 \rangle & \langle \phi_n, \phi_1 \rangle & \cdots & \langle \phi_n, \phi_n \rangle \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_n \\
\end{bmatrix} =
\begin{bmatrix}
\langle \phi_0, f \rangle \\
\langle \phi_1, f \rangle \\
\vdots \\
\langle \phi_n, f \rangle \\
\end{bmatrix}
\]

במקרא המבדיע טמ' משקל 'arrant המטריצה \(w(x)\), המטריצה \(\Phi^T W \Phi\) היא מטריצה \(W\). בשאר \(w_i\) ומשיקולים \(w_i\) על \(\Phi^T W \Phi\) האלכסוניים טמ' המשיקולים \(\{w(x_i)\}_{i=0}^N\) על \(\Phi^T W \Phi\).
1) \(\langle f, g \rangle = \sum_{i=0}^{N} f(x_i)g(x_i)w(x_i) \)

\[
\Phi^T W \Phi = \begin{bmatrix}
\phi_0(x_0) & \phi_0(x_1) & \cdots & \phi_0(x_N) \\
\phi_1(x_0) & \phi_1(x_1) & \cdots & \phi_1(x_N) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_n(x_0) & \phi_1(x_1) & \cdots & \phi_n(x_N)
\end{bmatrix}
\begin{bmatrix}
w(x_0) \\
w(x_1) \\
\vdots \\
w(x_N)
\end{bmatrix} =
\begin{bmatrix}
\phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\
\phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_0(x_N) & \phi_1(x_N) & \cdots & \phi_n(x_N)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\phi_0(x_0)w(x_0) & \phi_0(x_1)w(x_1) & \cdots & \phi_0(x_N)w(x_N) \\
\phi_1(x_0)w(x_0) & \phi_1(x_1)w(x_1) & \cdots & \phi_1(x_N)w(x_N) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_n(x_0)w(x_0) & \phi_1(x_1)w(x_1) & \cdots & \phi_n(x_N)w(x_N)
\end{bmatrix} =
\begin{bmatrix}
\phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\
\phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_0(x_N) & \phi_1(x_N) & \cdots & \phi_n(x_N)
\end{bmatrix}
\]
1) $\langle f, g \rangle = \sum_{i=0}^{N} f(x_i)g(x_i)w(x_i)$

\[
= \begin{bmatrix}
\sum_{i=0}^{N} \phi_0^2(x_i)w(x_i) & \sum_{i=0}^{N} \phi_0(x_i) \cdot \phi_1(x_i)w(x_i) & \cdots & \sum_{i=0}^{N} \phi_0(x_i) \cdot \phi_n(x_i)w(x_i) \\
\sum_{i=0}^{N} \phi_1(x_i) \cdot \phi_0(x_i)w(x_i) & \sum_{i=0}^{N} \phi_1^2(x_i)w(x_i) & \cdots & \sum_{i=0}^{N} \phi_1(x_i) \cdot \phi_n(x_i)w(x_i) \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i=0}^{N} \phi_n(x_i) \cdot \phi_0(x_i)w(x_i) & \sum_{i=0}^{N} \phi_n(x_i) \cdot \phi_1(x_i)w(x_i) & \cdots & \sum_{i=0}^{N} \phi_n^2(x_i)w(x_i)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\langle \phi_0, \phi_0 \rangle & \langle \phi_0, \phi_1 \rangle & \cdots & \langle \phi_0, \phi_n \rangle \\
\langle \phi_1, \phi_0 \rangle & \langle \phi_1, \phi_1 \rangle & \cdots & \langle \phi_1, \phi_n \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle \phi_n, \phi_0 \rangle & \langle \phi_n, \phi_1 \rangle & \cdots & \langle \phi_n, \phi_n \rangle
\end{bmatrix}
\]
1. אם הפונקציה \(f(x) \) מתאימה לסדרת \(\{ \phi_i(x) \}_{i=0}^{\infty} \) (1) פורט לאלכסון הרואיש מתאפס, לכל מכרי

\[
\begin{bmatrix}
\langle \phi_0, \phi_0 \rangle & \langle \phi_0, \phi_1 \rangle & \ldots & \langle \phi_0, \phi_n \rangle \\
\langle \phi_1, \phi_0 \rangle & \langle \phi_1, \phi_1 \rangle & \ldots & \langle \phi_1, \phi_n \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle \phi_n, \phi_0 \rangle & \langle \phi_n, \phi_1 \rangle & \ldots & \langle \phi_n, \phi_n \rangle
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_n
\end{bmatrix} =
\begin{bmatrix}
\langle \phi_0, f \rangle \\
\langle \phi_1, f \rangle \\
\vdots \\
\langle \phi_n, f \rangle
\end{bmatrix}
\]

מכרי מכרי

.\textbf{Fourier} מכרי

\[
c_i = \frac{\langle \phi_i f \rangle}{\langle \phi_i, \phi_i \rangle}
\]

מכרי

2. מהו המרחק של השגיאה \(e \) \(\| e \|_2 = \| f - f^* \|_2 \)?

מכרי

באנואטרפולציה מכרי

מכרי

מכרי

מכרי

LS-מכרי

מכרי

לrão

\(e = f - f^* \) \(\text{שקיבלו ملفי ההוספה, אז השגיאה המובטחת לרדת.} \)

أم הפונק' \(\phi_i \) נוספת אינפ' \(\text{א"ג לשגיאה} \) \(e \) מובטחת לרדת.
8. מיניימום ריבועים

דוגמה: קרב את ההפונקציה הנתונה \(y(x) = x^2 \) באמצעות הפולינום הממעלה 2 ספרי ריבועי השיגור הנקודות הדגימה נתון:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

פתרון פונקציות בסיס עבור פולינום ממעלה 2 \(\{1, x, x^2\} \):

נבנה את הדגימה התאotherapy \(w(x) = 1 \) (מניחים כי דוגמה נתונה):

\[
\begin{bmatrix}
\langle \phi_0, \phi_0 \rangle & \langle \phi_0, \phi_1 \rangle & \langle \phi_0, \phi_2 \rangle \\
\langle \phi_1, \phi_0 \rangle & \langle \phi_1, \phi_1 \rangle & \langle \phi_1, \phi_2 \rangle \\
\langle \phi_2, \phi_0 \rangle & \langle \phi_2, \phi_1 \rangle & \langle \phi_2, \phi_2 \rangle \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
\end{bmatrix}
=
\begin{bmatrix}
\langle \phi_0, f \rangle \\
\langle \phi_1, f \rangle \\
\langle \phi_2, f \rangle \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1,1 & 1, x & 1, x^2 \\
x, 1 & x, x & x, x^2 \\
x^2, 1 & x^2, x & x^2, x^2 \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
\end{bmatrix}
=
\begin{bmatrix}
1, f \\
x, f \\
x^2, f \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
3 & 3 & 5 \\
3 & 5 & 9 \\
5 & 9 & 17 \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
\end{bmatrix}
=
\begin{bmatrix}
11 \\
17 \\
31 \\
\end{bmatrix}
\]

פתרון המוגדר \(x^2 + x + 1 \) של הפולינום \(c_0 = c_1 = c_2 = 1 \):

\(P_2(x) = x^2 + x + 1 \)
8. מינימום ריבועים

בימיה לה:בודגמה היה נקודות 3 נק', דגימה وكיב' של 3 פ', שבעằmצותו hybrids זריכים לבזות את f^*.

באיזו שיטה ניתן להשתמש במקום מינימום ריבועים?

אינטרפולציה. לרוב פתרון "אינטרפולציה" ול"יתר השובית".

מה נורמת השגיאה עבור פולינום קירוב שקיבלנו בפתרון?

$e_2 = 0$ כי למעשה ביצענו אינטרפולציה, לכן בכל נק' דגימה מתקיים $f(x_i) = f^*(x_i)$ לכל נק' הדגימה מתכימה $||e||_2 = 0$.

אם היינו בוחרים פ' משקל $w'(x) \neq 1$, ניתן זה היה משפים על פולינום הקירוב שקידבלנו?

אם היינו בוחרים פ' משקל $w(x) \neq 1$, כי זה画像 המשפים על פולינום הקירוב שקידבלנו?

לא' המשקול $w'(x)$ איפי השפעת במקרה זה, כי דרכ' 3 נק' עזר פולינום ממוצעת 2 נק'.
8. מינים שונים

("מינימום ריבועים")

 exemple: ביצוע את הקירוב בדוגמה הקודמת "מ"י שימוש בבסיס אורתוגונלי מקדמי פורייה.

שיטה הפתרון:

1. נמצאת בסיס A" "גטס

\(\{\phi_i(x)\}_{i=0}^{n} \)

2. נוחטיב את המקדמים פורייה:

\(c_i = \frac{\langle \phi_i, f \rangle}{\langle \phi_i, \phi_i \rangle} \)

3. נבנה את הקירוב:

\(f^* = \sum_{i=0}^{n} c_i \cdot \phi_i \)
8. מיניימומ ריבועים

פתרון:
נמסנו את הבסיס המentarios: \(\{ g_i \} = \{ 1, x, x^2 \} \) ונגמה ביסיס \(\{ \phi_i \} \) \(i = 0 \) עד \(\phi_i(x) \) \(n \):

\[\phi_0 = g_0 = 1 \]

\[\phi_1 = g_1 - \phi_0 \frac{\langle g_1, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle} = x - 1 \cdot \frac{3}{3} = x - 1 \]

\[\phi_2 = g_2 - \phi_0 \frac{\langle g_2, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle} - \phi_1 \frac{\langle g_2, \phi_1 \rangle}{\langle \phi_1, \phi_1 \rangle} = x^2 - 1 \cdot \frac{5}{3} - (x - 1) \frac{4}{2} = x^2 - 2x + \frac{1}{3} \]
8. Минимум Рибоузи

Now we calculate the Fourier coefficients:

\[c_0 = \frac{\langle \phi_0, f \rangle}{\langle \phi_0, \phi_0 \rangle} = \frac{11}{3} \quad ; \quad c_1 = \frac{\langle \phi_1, f \rangle}{\langle \phi_1, \phi_1 \rangle} = \frac{6}{2} = 3 \quad ; \quad c_2 = \frac{\langle \phi_2, f \rangle}{\langle \phi_2, \phi_2 \rangle} = \frac{2/3}{2/3} = 1 \]

\[f^* = \frac{11}{3} + 3(x - 1) + \left(x^2 - 2x + \frac{1}{3}\right) = x^2 + x + 1 \]

Therefore, we have obtained the same approximation, as expected.

Conclusion: We calculated the Fourier coefficients, as expected.
8. מיניימום ריבועים

لسיכום: ישנה שני דרך לftarון בעיית מיניימום ריבועים כלית:

1. "י פתרון מציאת базיס יושום באמצעות פורחיא (מקרה פורחיא של נקודה הריאהה).

\[
\begin{bmatrix}
\langle \phi_0, \phi_0 \rangle & \langle \phi_0, \phi_1 \rangle & \cdots & \langle \phi_0, \phi_n \rangle \\
\langle \phi_1, \phi_0 \rangle & \langle \phi_1, \phi_1 \rangle & \cdots & \langle \phi_1, \phi_n \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle \phi_n, \phi_0 \rangle & \langle \phi_n, \phi_1 \rangle & \cdots & \langle \phi_n, \phi_n \rangle \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_n \\
\end{bmatrix}
=
\begin{bmatrix}
\langle \phi_0, f \rangle \\
\langle \phi_1, f \rangle \\
\vdots \\
\langle \phi_n, f \rangle \\
\end{bmatrix}
\]

2. "י פתרון: בסיס השימור בממוצע פורחיא (מקרה פורחיא של נקודה הריאהה)

מקודה פורחיא: בסיס השימור הממוצע פורחיא של נקודה הריאהה (ynom n = n) למزة את הפתרון "י אנטרフトלייח.
1) \(\langle f, g \rangle = \sum_{i=0}^{N} f(x_i) g(x_i) w(x_i) \)

8. Minimizing Quadratic Error

The problem: Approximate \(e^x \) using the minimum quadratic error by setting the weight \(w(x) = 1 \) up to and including:

\(\{ x_i \}_{i=0}^{4} = \{ -1, -0.5, 0, 0.5, 1 \} \)

\(\langle 1, x \rangle = \sum_{i=0}^{4} 1 \cdot x_i = 0 \) and \(\{ 1, x \} \) and the solution is:

The solution: Compute the basis of a polynomial of degree 1 whose four coefficients are:

\[
\begin{align*}
\{ c_0, c_1 \} &= \frac{\langle \phi_0, f \rangle}{\langle \phi_0, \phi_0 \rangle} = \frac{\sum_{i=0}^{4} 1 \cdot e^{x_i}}{\sum_{i=0}^{4} 1 \cdot 1} = 1.268; \\
\{ c_0, c_1 \} &= \frac{\langle \phi_1, f \rangle}{\langle \phi_1, \phi_1 \rangle} = \frac{\sum_{i=0}^{4} x \cdot e^{x_i}}{\sum_{i=0}^{4} x_i \cdot x_i} = 1.149
\end{align*}
\]

The polynomial that results from this is:

\(P_1(x) = 1.149x + 1.268 \)

Amusingly, this results in the polynomial being approximately:

\[
\begin{bmatrix}
5 \\
0 \\
2.5 \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\end{bmatrix}
= \begin{bmatrix}
6.3414 \\
2.8715 \\
\end{bmatrix}
\]

Thus, the minimum quadratic error is achieved.
8. מינימום ריבועים

הנוגה: קריב את \(e^x \) על הקטע \([-1, 1]\) בשיטת מינימום ריבועים עם פ' משקל \(w(x) = 1 \) על הקטע \([-1, 1]\).

 решение:

פ' בסיס עבור פולינום ממעלה \(n \) מהקבוצה \(\{1, x\} \) והמשייכים: 0 ו-1,\\

כלומר הבסיס \(\phi_0 = 1 \) ו\(\phi_1 = x \) לכל נקודה \(x \) השתייכת }

\[c_0 = \frac{\langle \phi_0, f \rangle}{\langle \phi_0, \phi_0 \rangle} = \frac{\int_{-1}^{1} 1 \cdot e^x \, dx}{\int_{-1}^{1} 1 \cdot 1 \, dx} = 1.175;\]
\[c_1 = \frac{\langle \phi_1, f \rangle}{\langle \phi_1, \phi_1 \rangle} = \frac{\int_{-1}^{1} x \cdot e^x \, dx}{\int_{-1}^{1} x \cdot x \, dx} = 1.104\]

לכן פולינום הקירוב הוא: \(P_1(x) = 1.104x + 1.175 \) חוא: 5.
הערה: ראינו בשתי הדוגמאות שהﺷנים בเทคนיק "F גורם לשינוי התוצאה של LS." ניתן להוכיח שתוצאת LS בדיד על רשת אחידה שואפת לתוצאה רציפה עם אותו "F משקל" נקזז להוכחה שהוצאתה LS בדיד על רשת אחידה שואפת לתוצאה רציפה עם אותו "F משקל" כשני המשנה במקצת."}

כשראש הרשת חלכה ומגזרה.
8. מינימום ריבועים

\[e^x \]

\[P_1 \]

\[\tilde{P}_1 \]
8. מיונים ריבועים

הערה: פונק' זוגית, א-זוגית או אינטגרלבקטש סימטרי

פונק' זוגית: מקיימת \(f(x) = f(-x) \)

פונק' א-זוגית: מקיימת \(f(0) = 0 \) ומקבלי \(f(-x) = -f(x) \)

פונק' זוגית מקיימת: \[\int_{-a}^{a} f(x) \, dx = 2 \cdot \int_{0}^{a} f(x) \, dx \]

פונק' א-זוגית מקיימת: \[\int_{-a}^{a} f(x) \, dx = 0 \]

מכפלה של פונקציה זוגית בפונקציה זוגית היא פונקציה זוגית.
מכפלה של פונקציה א-זוגית בפונקציה א-זוגית היא פונקציה זוגית.

מכפלה של פונקציה זוגית בפונקציה א-זוגית היא פונקציה א-זוגית.

מכפלה של פונקציה א-זוגית בפונקציה זוגית היא פונקציה א-זוגית.
8. משוואות ריבועים

הוגמה: עבור התת-קבוצה \([-\pi, \pi]\) עבור \(f(x) = |x| \) הפונקציה \(w(x) = 1 \) אשר י RECEIVE 'י חלazar ב- \(\alpha \) ב-

הערת: הפונקציה \(w(x) = 1 \) עבור \(-\pi \leq x \leq \pi \) הפונקציה \(\{\sin(kx), \cos(kx)\}_{k=0}^{3} \) מגוחכת ב- \(\alpha \) ב-

פתרון: נסמן \(f_1(x) = \sum_{k=0}^{3} a_k \sin(kx) + b_k \cos(kx) \). נטרה ב-

נ🏷נכת \(c_0 \) עבור כל \(k \) \(a_k \) או \(b_k \) \(-\pi \leq x \leq \pi \) הפונקציה \(\cos(kx) \) \(\sin(kx) \) \(0 \) \(\pi \) \(\sum_{k=0}^{3} \)

א-זוהית בקассив סימטריה.

לכל \(k \) \(a_k \) או \(b_k \) \(-\pi \leq x \leq \pi \) הפונקציה \(\cos(kx) \) \(\sin(kx) \) \(0 \) \(\pi \) \(\sum_{k=0}^{3} \)
8. מיניימום ריבועים

\[b_0 = \frac{\langle f, \cos(0) \rangle}{\langle \cos(0), \cos(0) \rangle} = \frac{\int_{-\pi}^{\pi} |x| dx}{\int_{-\pi}^{\pi} 1 dx} = \frac{\pi}{2} ; b_1 = \frac{\langle f, \cos(x) \rangle}{\langle \cos(x), \cos(x) \rangle} = \frac{\int_{-\pi}^{\pi} |x| \cos(x) dx}{\int_{-\pi}^{\pi} \cos^2(x) dx} = \frac{-4}{\pi} \]

\[b_2 = \frac{\langle f, \cos(2x) \rangle}{\langle \cos(2x), \cos(2x) \rangle} = \frac{\int_{-\pi}^{\pi} |x| \cos(2x) dx}{\int_{-\pi}^{\pi} \cos^2(2x) dx} = 0 ; b_3 = \frac{\langle f, \cos(3x) \rangle}{\langle \cos(3x), \cos(3x) \rangle} = \ldots = \frac{-4}{9\pi} \]

\[f_1^*(x) = 1.570796 - 1.27324 \cos(x) - 0.141471 \cos(3x) \]

לכן נקבל
8. מינימום ריבוזים

ה.IsEnabledPose=

ה isEnabledPose=

ה.isEnabledPose=

ה isEnabledPose=

ה.isEnabledPose=

הלון נקבל: \(f_2^*(x) = 1.5708 - 1.2387 \cos(x) - 0.0880 \cos(3x) \)
8. מיניימום ריבועים

$\min \sum_{i=1}^{n} f(x_i)$

$\min \sum_{i=1}^{n} f_1(x_i)$

$\min \sum_{i=1}^{n} f_2(x_i)$
8. Minimizing Variations

Given: Approximate \(\cos(x) \) on the interval \([-1, 1]\) using polynomials of degree 4 with weight \(w(x) \).

Solution: Choose the first 5 polynomials of the Chebyshev polynomial family:

\[
T_0 = 1, T_1 = x, T_2 = 2x^2 - 1, T_3 = 4x^3 - 3x, T_4 = 8x^4 - 8x^2 + 1
\]

The problem: Minimize the least-squares error for \(\cos(x) \) using the weight function \(w(x) \).

We have: \(c_0 = \frac{\langle f, T_0 \rangle}{\langle T_0, T_0 \rangle} = \frac{\int_{-1}^{1} \cos(x) \cdot 1 \cdot (1 - x^2)^{-1/2} \, dx}{\int_{-\pi}^{\pi} 1 \cdot 1 \cdot (1 - x^2)^{-1/2} \, dx} = 0.765198 \)

Since \(\cos(x) \) is an even function, \(c_1, c_3 = 0 \).
8. מיניימוס ריבועים

ורוגמה: קרוב את \(\cos(x) \) בקטע \([1,1]\) "ע" פולינום ממעלה 4 עם כ\' משקל \(w(x) = \frac{1}{\sqrt{1-x^2}} \)

פתרון: נבחר ב-5 הפולינומים הבאים של \(i \):

\[
T_0 = 1 \, , \, T_1 = x \, , \, T_2 = 2x^2 - 1 \, , \, T_3 = 4x^3 - 3x \, , \, T_4 = 8x^4 - 8x^2 + 1
\]

\[
c_2 = \frac{\langle f, T_2 \rangle}{\langle T_2, T_2 \rangle} = -0.229807 \; ; \; c_4 = \frac{\langle f, T_4 \rangle}{\langle T_4, T_4 \rangle} = 0.00495327
\]

נקבל:

\[
P_4(x) = 0.999958 - 0.49924x^2 + 0.0396262x^4
\]
8. מ(balance)המ(x) - פ' המשקל

דוגמה: נתונה f(x) ב马来ה וرغبימן לבהנה קרוב "y = \{1, x\} עם שתי פ' משקל שווה:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>4</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>5</td>
<td>14</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

א. \(w(x) = 1 \) בכל נק' הדגימה

\(w(0) = w(4) = w(10) = 1 \), \(w(1) = 10 \)

ב. פתרון:

עלינו לפתור את המשנה:

\[
\begin{bmatrix}
\langle \phi_0, \phi_0 \rangle & \langle \phi_0, \phi_1 \rangle \\
\langle \phi_1, \phi_0 \rangle & \langle \phi_1, \phi_1 \rangle
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1
\end{bmatrix} =
\begin{bmatrix}
\langle \phi_0, f \rangle \\
\langle \phi_1, f \rangle
\end{bmatrix}
\]
8. Minimorum Rivuzim - F' HaMesekil

I) \(\langle f, g \rangle = \sum_{i=0}^{N} f(x_i)g(x_i)w(x_i) \)

\[
\langle \phi_0, \phi_0 \rangle = \langle 1,1 \rangle = \sum_{i=0}^{3} 1 \cdot 1 \cdot 1 = 4
\]

\[
\langle \phi_0, \phi_1 \rangle = \langle 1, x \rangle = \sum_{i=0}^{3} 1 \cdot x_i \cdot 1 = 0 + 1 + 4 + 10 = 15
\]

\[
\langle \phi_1, \phi_1 \rangle = \langle x, x \rangle = \sum_{i=0}^{3} x_i \cdot x_i \cdot 1 = 0 + 1 + 16 + 100 = 117
\]

\[
\langle \phi_0, f \rangle = \langle 1, f \rangle = \sum_{i=0}^{3} 1 \cdot f(x_i) \cdot 1 = 5 + 14 + 7 + 2 = 28
\]

\[
\langle \phi_1, f \rangle = \langle x, f \rangle = \sum_{i=0}^{3} x_i \cdot f(x_i) \cdot 1 = 0 + 14 + 28 + 20 = 62
\]
\[\langle f, g \rangle = \sum_{i=0}^{N} f(x_i)g(x_i)w(x_i) \]

8. ממומת ריבועים - פ' המשקל

\[\langle \phi_0, \phi_0 \rangle = \langle 1, 1 \rangle = \sum_{i=0}^{3} 1 \cdot 1 \cdot w(x_i) = 1 + 10 + 1 + 1 = 13 \]

\[\langle \phi_0, \phi_1 \rangle = \langle 1, x \rangle = \sum_{i=0}^{3} 1 \cdot x_i \cdot w(x_i) = 0 + 10 + 4 + 10 = 24 \]

\[\langle \phi_1, \phi_1 \rangle = \langle x, x \rangle = \sum_{i=0}^{3} x_i \cdot x_i \cdot w(x_i) = 0 + 10 + 16 + 100 = 126 \]

\[\langle \phi_0, f \rangle = \langle 1, f \rangle = \sum_{i=0}^{3} 1 \cdot f(x_i) \cdot w(x_i) = 5 + 140 + 7 + 2 = 154 \]

\[\langle \phi_1, f \rangle = \langle x, f \rangle = \sum_{i=0}^{3} x_i \cdot f(x_i) \cdot w(x_i) = 0 + 140 + 28 + 20 = 188 \]
8. מיניימוס ריבועים - פ' המשקלו

מקרה I:

\[
\begin{bmatrix}
4 & 15 \\
15 & 117
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1
\end{bmatrix}
=
\begin{bmatrix}
28 \\
62
\end{bmatrix}
\]

 yanlış לäsרו פאתי

removed erroneous text

where we get:

\[P_1(x) = 9.6543 - 0.7078x\]

מקרה II:

\[
\begin{bmatrix}
13 & 24 \\
24 & 126
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1
\end{bmatrix}
=
\begin{bmatrix}
154 \\
188
\end{bmatrix}
\]

where we get:

\[P_1(x) = 11.9689 - 0.7877x\]
8. מינים יהוזים - משקל

גרף:

מקרה I

מקרה II