שאלה 1:
סעיף A:
חוקרים נמצאים מעל פני הים ומגלים גוף לא מזוהה שאורכו \(L \). הוא ידוע את גובהו \(H \), ומדיד את הזוויות \(\alpha \) \(\text{ממנו אל כ"א מקצוות הגוף} \) ו- \(\beta \). רוצים לחשב את אורכו \(L \).

станов מהדליםнской:
\[L = 10000 \text{m}, \alpha = 45^\circ, \beta = 45.02^\circ, \theta = 0.78575 \]

ל timeZone לחשב \(L \) על פי
\[L = H \left(\tan \beta - \tan \alpha \right) \]

פתרון (מספר אופטישות להתר здесьן(כוא):)
\[\tan (\alpha) = 1, \tan (\beta) = 1.0007 \]
\[\tan (\beta) - \tan (\alpha) = 1 - 1.0007 = 0.0007 = 0.7 \cdot 10^{-3} \]
\[H \cdot \Delta \tan = 10000 \cdot 0.7 \cdot 10^{-3} = 7. \]

ocaust תופעת התבטלות בה איבדנו לפחות 4 ספרות מובילות בערך הפרש \(\tan \). לכן אין \(3 \) ספרות נכונות דרך פתרון אחרת, ערכי \(\tan \) הם בין \(1 \) ל\(\sim 1 \) ולכן ישנו 4 ספרות דיוקים בפונקוח ה-

דר פתרון אחר, ערכי \(\tan \) הם \(1 \) ל-10 ולכן ישנו 4 ספרות דיוקיות בפונקוח ה-

\[\Delta \tan = 0.7 \cdot 10^{-3} \]
\[\Delta \tan - \Delta \tan \leq \delta \cdot \tan (\beta) \approx 0.5 \cdot 10^{-4} \]

Relative error \(\leq \frac{H \left(\Delta \tan - \Delta \tan \right)}{H \left(\Delta \tan \right)} \]
\[\text{ Relative error } \leq \frac{H \left(0.5 \cdot 10^{-4} \right)}{H \left(0.7 \cdot 10^{-3} \right)} = 0.71 \cdot 10^{-1} = 0.071 = 7.1\% > 0.5 \cdot 10^{-1} \]

נMainThread כי \(\alpha \) ל-אף ספרה נמוכה בפונקוח.

סעיף ב:
\[\tan (\beta) = \tan (\alpha + \varepsilon) = \tan (\alpha) + \frac{1}{\cos^2 \alpha} \varepsilon + R_2; \]
\[R_2 = \frac{\sin \varepsilon}{\cos^3 \alpha} \varepsilon^2 \]
\[\Rightarrow \tan (\beta) - \tan (\alpha) = \frac{1}{\cos^2 \alpha} \varepsilon + R_2 \]

לכן وقت לחשב את התשובהقضاء "כא":
\[\varepsilon = 3.4907 \cdot 10^{-4}; \alpha = 45^\circ; \]
\[L = H \left(\frac{\varepsilon}{\cos^3 \alpha} \right) = 10000 \left(\frac{3.4907 \cdot 10^{-4}}{1/2} \right) = 6.9814 \]
נמצא את החסום לשגייה:

يشום כשת 2 מקורות: שגיאת הקיטוע והשגיאה בחישוב \(\cos \).

נתון בóryיה הקיטוע:

\[
R_2 = \frac{\sin \xi}{\cos^3 \xi} \leq \frac{\sin \beta}{\cos^3 \beta} e^2 = 0.70834 \quad \frac{0.78575}{0.3517} \leq 1.7^2 \cdot 10^{-6} \approx 2.35^2 \cdot 10^{-8} = 2.45 \cdot 10^{-7}
\]

\[
R_f = H \cdot R_2 \leq 0.00245
\]

şaיאית החישוב הנוספת: לע"י השגיאה ב- \(\cos \).

 opción 1:

\[
\Delta \cos \leq 0.5 \cdot 10^{-4} \cos(\alpha)
\]

\[
\Delta \left(\frac{1}{\cos^2 \alpha} \right) \leq \frac{2}{\cos^3 \alpha} \Delta \cos \leq \frac{2}{\cos^3 \alpha} 0.5 \cdot 10^{-4} = \frac{4}{2} \cdot 10^{-5} = 2 \cdot 10^{-5}
\]

\[
\Rightarrow R_n = H \varepsilon \Delta \left(\frac{1}{\cos^3 \alpha} \right) \leq 10000 \cdot 3.5 \cdot 10^{-4} \cdot 2 \cdot 10^{-4} = 0.7 \cdot 10^{-3}
\]

ilihan hepatite:

\[
R_{\text{total}} \leq R_n + R_f = 0.00245 + 10^{-4} = 0.00245
\]

וחשאיה הנוספת:

\[
R_{\text{total}} \leq \frac{0.00245}{L} \leq 0.35 \cdot 10^{-3} < 0.5 \cdot 10^{-3}
\]

ולק קיבילה 3 ספורים משמשו יהו לוח בפרונט.

 CPC:

\[
L = H \left(\tan(\beta) - \tan(\alpha) \right)
\]

\[
\Delta H \leq 0.5; \Delta \alpha, \Delta \beta \leq 0.5 \cdot 10^{-5}
\]

\[
\Delta \tan = 0.7 \cdot 10^{-3}
\]

\[
\frac{1}{\cos^2 \beta} \approx \frac{1}{\cos^2 \alpha} \approx 2
\]

\[
\Delta L_{\text{total}} \leq \Delta H \cdot \Delta \tan + H \frac{1}{\cos^2 \beta} \Delta \beta + H \frac{1}{\cos^2 \alpha} \Delta \alpha \approx \frac{1}{2} \cdot 0.7 \cdot 10^{-3} + 2 \cdot 10^{-4} \cdot 2 \cdot 0.5 \cdot 10^{-5} \approx 0.2
\]
שאלה 2:

פתרון המשוואות הנורמליות:

\[A^T A = \]
\[
\begin{array}{cc}
23.0000 & 4.0000 \\
4.0000 & 4.5000 \\
\end{array}
\]

\[A^T b = \]
\[
\begin{array}{c}
29.0000 \\
10.7500 \\
\end{array}
\]

\[x = \]
\[
\begin{array}{c}
1.0000 \\
1.5000 \\
\end{array}
\]

סעיף ב:

הפתרון בשני פ' הוא האופטימלי מביניהם mínimun ריבועים, לא ייה載 פתרון טוב ממנו בנורמת ה-2 הממשיקלת.

סעיף ג:

הקירוב היא פתרון ריבועים עם 3 פ' בסיס על 3 נקודות, אך שקול לאינטרפולציה עין תליה בפונקציה המשולחת (השיגימה כל נורמה多少钱 הוא 0 ולא קיים למשולחת). נלעט על המשולחת ונטענו את הפרשים מחולקים.

Divided differences table:

<table>
<thead>
<tr>
<th></th>
<th>2.7183</th>
<th>4.4817</th>
<th>7.3891</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3.5268</td>
<td>5.8147</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>2.2879</td>
</tr>
</tbody>
</table>

Newton Coefficients:

2.7183
3.5268
2.2879
שאלה 3

סעיף א (משותף עבור כל שיטה יש בסעיף הבא)
עב保險 שהוא עשתון נצפה שהשמתגר את המשואות ואשר התויה התכנסות.

סעיף ב:

שיטה

\[f(\alpha) = 0 \]

עבור כל השיטות נצפה שייתפתרו את המשוואה כאשר תהיה התכנסות.

סעיף ב:

שיטה

\[f(\alpha) = 0 \]

xia

שמונה שיטה מתכנסת לכל \(x_0 \)!

שיטה ii

\[f(\alpha) = 0 \]

xia

שיטה iii

. "קונסיסטנטייה" נ 회원ו \(|f'| \leq 0.8 < 1 \)

רואים \(f \) הגרף המתריע \(x \) יmetics. \(f(\alpha) = 0 \) \(\alpha \in I \)

ע"פ משפט 2 משמטו 3 השיטה מתכנסת.
סעיף ג:

 üretה iii: כבר ראינו כי \(f' \) אינה מתאפסת ולכן סדר ההתכנסות הינו 1.

 üretה iii: זוהי שיטת ניוטון-ראפסון ולכן תתכנס עם סדר 2至少ון בכניסה של \(f' \) ומטר מצורה \(f'' \) שבה פונקציה שלמה מshot, \(f'' \) היא פונקציה ממש ו\(f'' \) אינה מתאפסת בקטע \((a,b)\). מכך סדר המתכנסות הינו 2 בודא.

 üretה ד: נicut את הש.intersection מאיטקין: \(x_1 = 2.0785 \), \(x_2 = 2.0618 \), \(x_3 = 2.0489 \).

 üretה ה:

 \(C \approx \frac{x_n - \hat{x}}{x_n - \hat{x}} \)

 Convergence Factor:

 \[\text{ans} = \begin{bmatrix} 0.7772 \\ 0.7785 \\ 0.7785 \end{bmatrix} \]

 üretה ו:

 \(F = Ax - b \)

 \(\nabla F = J = A \)

 \(x_{k+1} = x_k - J^{-1}(Ax_k - b) = x_k - A^{-1}(Ax_k - b) = x_k - x_k + A^{-1}b \)

 המטריצה נמצאת ב谢韵 שאך האיטרטציה בורחת פתרון של המטריצהอล קר.
שאלה 4:

סעיף א:
האינטגרציה תהיה נכונה לכל פולינום עדמעלה 2 (כולל).

נמצא פולינום אורתו:

<table>
<thead>
<tr>
<th>k</th>
<th>I_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8/3</td>
</tr>
<tr>
<td>1</td>
<td>4/3</td>
</tr>
<tr>
<td>2</td>
<td>16/15</td>
</tr>
<tr>
<td>3</td>
<td>4/5</td>
</tr>
<tr>
<td>4</td>
<td>24/35</td>
</tr>
</tbody>
</table>

$P = x^2 + ax + b$;

\[
\begin{align*}
(P,1) & = I_2 + aI_1 + bI_0 = 0 \quad \Rightarrow \quad \frac{a}{3} + b \frac{8}{3} = -\frac{16}{15} \quad \Rightarrow \quad 20a + 40b = -16 \\
(P,x) & = I_3 + aI_2 + bI_1 = 0 \quad \Rightarrow \quad \frac{a}{15} + b \frac{4}{3} = -\frac{4}{5} \quad \Rightarrow \quad 16a + 20b = -12
\end{align*}
\]

\[\Rightarrow -12a = 8 \Rightarrow a = -\frac{2}{3} \quad \Rightarrow \quad b = -\frac{1}{15} \quad \Rightarrow \quad P = x^2 - \frac{2}{3}x - \frac{1}{15}\]

\[x_{0,1} = \frac{\frac{2}{3} \pm \sqrt{\frac{4}{9} + \frac{4}{15}}}{2} = -0.0883, 0.7550\]

סעיף ב:

נמצאים המקדמים:

\[I(f) \approx A_0 f(x_0) + A_1 f(x_1)\]

\[
\begin{align*}
I(1) & = \frac{8}{3} = A_0 + A_1 \\
I(x) & = \frac{4}{3} = A_0 (-0.0883) + A_1 0.7550 \\
& \Rightarrow 0.9 = 1.170 A_0 \quad \Rightarrow A_0 = 0.8057, \quad A_1 = 1.8609
\end{align*}
\]

\[\Rightarrow I(f) = 0.8057 f(-0.0883) + 1.8609 f(0.7550)\]

نظרכת השגיאה:

\[E = \frac{f^{(4)}(\xi)}{2n+2!} \int_{-1}^{1} (x-x_0)^2 (x-x_1)^2 w(x) dx\]

\[C_4 = \int_{-1}^{1} (x-x_0)^2 (x-x_1)^2 w(x) dx = I(x^4) - I(x^4) =
\]

\[= 24/35 \left[0.8057 \cdot (-0.0883)^4 + 1.8609 (0.7550)^4 \right] = 24/35 \left[4.9 \cdot 10^{-4} + 1.8609 (0.7550)^4 \right] =
\]

\[= 24/35 \cdot 0.6047 = 0.081 \Rightarrow E \leq \frac{M_4}{4!} \cdot 0.081 = 3.37 \cdot 10^{-2} \cdot M_4\]
I(f) = 0.8057f(-0.0883) + 1.8609f(0.7550)

I = \int_{-1}^{1} \sin^2(1+x)dx = \int_{-1}^{1} \left(\frac{1}{1+x}\right)^2 (1+x)^2 dx = A_0 \frac{\sin^2(1+x_0)}{(1+x_0)^2} + A_1 \frac{\sin^2(1+x_1)}{(1+x_1)^2}

\text{סעיף ה:}

יהי פולינום כלשהו הרחוק מ \(f\) ע"פ נורמת מקסימום \(\|\cdot\|_{\infty}\).

נוסיף לאיבר השגיאה \(2^2\):

איברים נוספים ונחסום

\(E = \int f(x)w(x)dx - \sum A_if_i = \int f(x)w(x)dx - \sum A_if_i + \int P_N(x)w(x)dx - \int P_N(x)w(x)dx + \sum A_iP_N(x_i) - \sum A_iP_N(x_i) = \left[\int f(x) - P_N(x)\right]w(x)dx + \left[\int P_N(x)w(x)dx - \sum A_iP_N(x_i)\right] + \left[\sum A_i(P_N(x_i) - f(x_i))\right] = (*)\)

\(\varepsilon = \|f(x) - P_N(x)\|_{\infty} \leq \varepsilon \int w(x)dx + \left[\int (P_N) - \hat{I}(P_N)\right] + \varepsilon \sum A_i\)

בנוסף דרישת \(E \leq \delta\) מ DEAL

\(.2\varepsilon \int w(x)dx \leq \delta \Rightarrow \varepsilon \leq \frac{\delta}{2\int w(x)dx} \Rightarrow needed\ N \Rightarrow needed\ n\ s.t\ 2n+1 \geq N\)

לכן:

\(\delta = 10^{-6}, \quad \int w(x)dx = \frac{8}{3}\)

\(\Rightarrow \varepsilon \leq \frac{3 \cdot 10^{-6}}{16} = 1.875 \cdot 10^{-7}; \quad 10^{-0.5N} \leq 1.875 \cdot 10^{-7} \Rightarrow N = 14 \Rightarrow n = 7\)

לכןueur לוишטייב נקת לשתי מדגמה על מנט לולשיג את הקירובadrosh.