אנליזה נומרית (234107)
חלק ב' - אלגברה ליניארית נומרית
Numerical Linear Algebra (NLA)

ריבועים פחותים (5a)

מאט: מיקי אלעד
מאי 2016

המשרה של הריצאה 2ר

- Least-Squares
אנון נ股权转让 בשיעור הריבועים הפחותים - שמכילה את המשוואה של פתרון מערכות המשוואה ליניאריות
לכלול פתרון מקובב

\[\|Ax - b\|_2^2 \rightarrow \text{Min} \]

למד את תכונותיה של בכיתZA
 damning בדריכים לפתרונה נ кудורieron לonta להหมอ של פורום LU
موضوع שימושים של ה- LS
תוכן העניינים

ריבועים פחותים

1. תכונת – מטריצה厚厚的ות ממדית
2. ממוצע של משושאדות ריבועים פחותים
3. מודלים של שבלועות ריבועיים
4. גזרת ביטויים פיטון-קוקסי
5. התאמת עקומות למטרות
6. ריבועים פחותים ממושכים
7. RGL – הגרליריצה לביצוע
8. הדלפק: נקיק רעש מתואמת דבורה
9. ריבועים פחותים ריוואסיבים – RLS
10. שיטה של – Moving Least Squares

\[\left\| Ax - b \right\|^2 \rightarrow \text{Min} \]
1. Definitions – Symmetries in Quadratic Forms

Definition: The matrix K is symmetric if it has the same elements in each diagonal pair (Positive Definite - PD).

$$\forall x \neq 0, \quad x^T K x > 0$$

- Question: The main diagonal is $\neq 0$. What is the value of $K > 0$?
- Advertisement: $x a x^2 > 0$ for all x.
- Answer: $a > 0$.

PD Matrix Example

- The matrix K is a PD matrix.
- The eigenvalues of K are not zero.
- Conclusion: The matrix K is PD.

Example:

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$x^T K x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= x_1^2 + x_2^2 + x_3^2$$

- Question: Is $x^T K x > 0$?
- Conclusion: Yes, because $x_1^2 + x_2^2 + x_3^2 > 0$.

- Question: What is the value of $x^T K x$?
- Conclusion: It can be any non-negative value.

1. Definitions – Symmetries in Quadratic Forms

Definition: The matrix K is symmetric and has positive semi-definite (Positive Semi-Definite - PSD).

$$\forall x \neq 0, \quad x^T K x \geq 0$$

- Question: The main diagonal is $\neq 0$. What is the value of $K \geq 0$?
- Advertisement: $x^T K x = 0$ for all x.
- Answer: $K \geq 0$.

PSD Matrix Example

- The matrix K is a PSD matrix.
- The eigenvalues of K are non-negative.
- Conclusion: The matrix K is PSD.

Example:

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$x^T K x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= x_1^2 + x_2^2 + x_3^2$$

- Question: Is $x^T K x \geq 0$?
- Conclusion: Yes, because $x_1^2 + x_2^2 + x_3^2 \geq 0$.

- Question: What is the value of $x^T K x$?
- Conclusion: It can be any non-negative value.
1. תכונת – מטריצה חיבית מוגדרת

דוגמה 1: מטריצה ה-1,׳׳ שראוי לзнакомת לאחור לרשום כ-

\[K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \]

\[\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \]

\[= (x_1 + x_2 + x_3)^2 \geq 0 \]

ה名列前ה היא שמעטריצה זו א態度 איננה קר היא בהתחלה PSD המס聋ה היי שמעטריצה זו א態度 איננה קר היא בהתחלה

1. תכונת – מטריצה חיבית מוגדרת

דוגמה 2: סבר אלי ערכיה a PSD או PD מהטריצה זו? מהטריצה זו?

\[K = \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix} \]

\[\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} x_1 - ax_2 \\ ax_1 + x_2 \end{bmatrix} \]

\[= x_1^2 + 2ax_1x_2 + x_2^2 = (x_1 + ax_2)^2 + (1 - a^2)x_2^2 \]

לכן,

הנקודות המסומנות \(a \) PSD או PD מהטריצה איננה קר היא בהתחלה \(\lambda \leq 1 \)

אם \(\lambda \leq 1 \) המטריצה PSD או PD או \(\lambda > 1 \) המטריצה PSD או PD
1. תכונות – מטריצותに向וביים מוגדרות

למה מטריצותに向וביים (חציו) מוגדרות כ פסיפלאריות? מעולם שים
לן קוצר הוזיק לא פיזי של פעוטות רובוט נבדסת (אף זה עוד נראיה
Least-Squares, או מראית לביית ה-
במהשר), או מראית לביית ה-

מקרה לא_acab של מטריצותに向וביים (חציו) מוגדרות או המבנה

\[K = A^T A \]

כש-
כלשהו الأولו
וזהא ריבועות!
מונמכ כללא קרויים
Gram מטריצות

1. תכונות – מטריצותに向וביים מוגדרות

משהו: מטריצת גראמ היא ב produit החץ
asmユニוםיתית של
A שול ב"ל, זה מטריצה דו הינה
A : בת"ל, לא קיים יקטור שייך

-clear
tובית הzip מוגדרת

\[K = A^T A \Rightarrow x^T A^T A x = \|A x\|^2 \geq 0 \]

- אםユニוםיתית
A בת"ל, לא קיים יקוטר שייך
- התורים. לכל היותר אחד לא יתקפס לכל יקוטר \(x \) שיאני Tobyli,
ולכלユニוםיתに向וביים מוגדרות.
1. תכונת – מטריצה חויית מוגדרת

משם: אם מטריצה חויית מוגדרת ואדם

בעלת עמודות בה"ל, אז מטריצה

AᵀCA

חויית מוגדרת

וזה הסעיף של מטריצת הערכים собריונים קיימים, ונהנה על ההוכחה:

הקטור x לא יוכל להתחשב לכל x \in \mathbb{R} (שארinya טריוויאלי)

נScrollView x = Az

 komtissors x שx ב-C

מחק שמיקס המרחב באט יחידה של חויית C חויית מוגדרת

K = AᵀCA \Rightarrow xᵀAᵀCAx = zᵀCz > 0

2. מערכות של משוואות ריבועים פחוסים

נניח כי ב逑ים סידרה 1 ממשואות 1-2 נלעמים מצב פתרון זינו

f₁(x) = 0, f₂(x) = 0, ... fₘ(x) = 0

מתמשים

נScrollView לחריד פוקציה שמשלבת את כל האלה לቀציציות מוחי או

p(x) = [f₁(x)]² + [f₂(x)]² + ... + [fₘ(x)]² = ∥f(x)∥²

ולחקף ה trous x שx שפוש את המניפה של פוקציה זה.

ברור כי אם יש פתרון למערכת המוקירת, окру הפוקיצה במינימוס

יהיו זוהי התשובה. לק, הביעויה ה"ל שקולות.

אם, לעום זה, אין למערך המשואות פתרון, עד"י יתקי

שמינימיזציה של p(x) ב välל ערכי z שינו, כי פירושה מציית של

פתרון מציב אש מיים שגיאת רבה עבור של המשואות המוקירת.
לסיכום:

$$\begin{align*}
\begin{cases}
 f_1(x) = 0 \\
 f_2(x) = 0 \\
 \vdots \\
 f_m(x) = 0
\end{cases}
\end{align*}$$

$$\min_x p(x) = \min_x \sum_{k=1}^{m} \left[f_k(x)\right]^2$$

$$f(x) = 0 \quad \Rightarrow \quad \min_x \left\| f(x) \right\|_2^2$$

אם אמרğun מתורו, הינו ה哚ק של שקולים

אם אינן מתורו, הינו ה哚ק של ייחודי

2. מערכות של משואות וירבעים פיתונים

Demo-LS-1.m

הדגמים נשק좌 ד"ע "הרוצה" הרץ
2. Minimize the squared error:

\[p(x) = \sum_{k=1}^{m} (a_k x - b_k)^2 = (Ax - b)^T (Ax - b) \]

\[= \|Ax - b\|^2_2 = \|r\|^2_2 \]

2. Minimize the squared error:

\[\begin{cases} a_1 x - b_1 = 0 \\ a_2 x - b_2 = 0 \\ \vdots \\ a_m x - b_m = 0 \end{cases} \]

Compute the minimum of the squared error:

\[\min_{x} \sum_{k=1}^{m} (a_k x - b_k)^2 \]

\[\min_{x} \|Ax - b\|^2_2 \]

- We can rewrite the system as a matrix equation:

\[Ax = b \]

- We minimize the squared error:

\[\min_{x} \sum_{k=1}^{m} (a_k x - b_k)^2 \]

- We can solve for the solution:

\[Ax = b \]

- We minimize the squared error:

\[\min_{x} \|Ax - b\|^2_2 \]
2. מערכות של משוואות ריבועים פ瘙טיים

הדגמה נviar זה אני, הרצת מקלטורים

הסרהול את הארת על אorta בין: נינו כ-2دان סדרה בת \(n > K_0\)

\[\{v_1, v_2, v_3, \ldots, v_{K_0}\} \in \mathbb{R}^n \]

\[\sum_{k=1}^{K_0} x_k v_k = A x \]

ברור כי מקלוטי זה פורשים תחת-מקרא \(v_{K_0}\) במק旆 \(x_{K_0}\) عمוק, כמקלוטי תחת-מקרא זה נписать להינכתב: כמותיות הקשורת המ"א אי הارات" אודרנית המטריצה

\[\sum_{k=1}^{K_0} x_k v_k = A x \]

וסמוכח את הקשורת של"א" הارات" אודרנית המטריצה \(A\) כמטריצה של שטחים והמקלוטים \(v_k\) ומכירה את שורות \(v_{K_0}\) המקלוטים
2. מערכים של שושואות וירבעים פחומים

נניח כי נתון ליוקטור שירורתי \(b \), ורצינו למżą את הוקטורים ביקור ייצור \(b \) (בማורת אוקלידיה)
בת-مثال-

הדריך למزاיאת הת.SelectedValue

\[
\min_x \left\| \sum_{k=1}^{K_0} x_k y_k - b \right\|^2 = \min_x \left\| Ax - b \right\|^2
\]

כלי בנייה של \(y \) נייתנה לה_regularizer

כבר_aes הת сфכרת החמה cumshot \(A \) התואמת התさせて頂 הגנה הוקטור \(A \)
של המטריצה \(A \).

3.מינימיזציה של בשיעת רובעית

איך פותרים בשיעת \(y \) ל-1?

\[
p(x) = \left\| Ax - b \right\|^2 = (Ax - b)^T (Ax - b)
\]

\[
= x^T A^T A x - b^T A x - x^T A^T b + b^T b
\]

של איברים אלה של ה-

\[
= x^T A^T A x - 2 x^T A^T b + b^T b
\]

כדיになってしまう

שהיא מצטיירת היא PSD

שהיא בנลินים של המטריצה \(A \)

הפונקציה שנוחקובהパワー של בוקטור \(x \) עם מידה \(\theta \) היא מקנידה ערכ

סקאלרים. דה שמעינח "פרוברה ר-ממידית" כי היא麦לואית את איברי

ב välש \(0, \ldots, 2 \). לכל \(k \), נקרא bietet וז השיעת הרובעית
3. מינימיזציה של בעיות ריבועיות

משפט: בהינתן הביעה היריבות
\[p(x) = x^T K x - 2 x^T f + c \]

המאמפים "ע" \(\{K, f, c\} \)ผสม יחוב מדגמות, אז \(x^* = K^{-1} f \)

ועריך הפונקציהバックודזה \(x \).

\[p(x^*) = c - (x^*)^T K (x^*) \]

הערה: בנוסחת הפתרון אנו נדרשים لتحقيق את \(x^* \), והזוה חווית \(K \) כי היא

הנגנון שמתסניר לעיון דוגמא דוגמא

3. מינימיזציה של בעיות ריבועיות

הנת交流合作 בקשת

\[x^* = K^{-1} f \iff K x^* = f \]

הנובע את \(p(x) \) של:

\[p(x) = x^T K x - 2 x^T f + c = x^T K x - 2 x^T K x^* + c \]

\[= (x - x^*)^T K (x - x^*) + c - (x^*)^T K (x^*) \]

הערה: נשים לב כי גלול במעברים הל"ל את היחידה \(K \) סימטרית

בתוך שחתלפסל, בשלי היחידה \(K \) יחוב מדגמות, בוחר ש-

\[(x - x^*)^T K (x - x^*) \geq 0 \]

למעשי ביטוי זה מובא לערכי המיניימיי, \(x \) עבורי \(x^* \).

ןקודה מיניימום יחידה ואולביות, עיר הפונקציה נמצאי ישירות

\[x = x^* \]
3. מיניימציה שלبعית ריבועית

אם נチョ르 לבועה המKHRית

\[p(x) = \|Ax - b\|^2 = (Ax - b)^T (Ax - b) \]

הפתרון הוא:

\[x^* = K^{-1}f = (A^T A)^{-1} A^T b \]

וזהו כננו רק אם עמודית של \(A \) בת"ל, ללא מנת להבבסה את הייחט

הפעילה \(f \) היא זאמרא צאת אחור - חיביט מוגדרת \(A^T A \)

משאושא \(A \) וקריאת המשאושא הኖרמטית:

והנה הסיבה - בקרה של האופטימלי

מתככלAlbert אairyטרק אנכי ל��ונות

\[A^T (Ax^* - b) = A^T r^* = 0 \]

לטשא, בעיית ה- "מולידה" הכדורת למינור על מטריצה, המتشكֵלת עם היוצר רגיל בשמתריית ריבועית והפעילה.

Pseudo-Inverse \(A \)

\[\text{PseudoInverse} \{ A \} = A^+ = (A^T A)^{-1} A^T \]

3. מיניימציה שלבעית ריבועית

מה קווה כשאר \(A \) ריבועית ופעילה?

- מיתר, מערכות המשאושא \(A^T A \), הגה בילע פתרון ייחד הנותון "עוק".
- A bềית פתרון \(x^* = A^{-1}b \) תית \(p(x^*) = 0 \), ולא איזון
- A равно פתרון האופטימלי
- A מאייד, פתרון בעיית ה- "מולידה" שיקיבול משיכר לניית נונן"כ, לייב גודרער, ולא הוא בו הלכלכל על הפתרון "עוק". איזון

\[x^* = \left(A^T A \right)^{-1} A^T b = A^{-1} A^{-T} A^T b = A^{-1} b \]

למעשה, בעיית ה- "מולידה" הכדורת למינור של מטריצה, Pseudo-Inverse \(A \)

\[\text{PseudoInverse} \{ A \} = A^+ = \left(A^T A \right)^{-1} A^T \]
3.ביעיית ריבועית

הוגהפוסט הפתרון "ע"" המشرح הרצת ח"מ

3.ביעיית ריבועית

- איך כל סיווון זה מתוחבר להרצאה הקדמת על הפירוקים של "ריי ו- סיוון

- בcholesky, מוענים הפתרון הפתרון הידיאט ידיאט מוענים לפי השורות המפרידיות

- \(p(x) = \|Ax - b\|^2 = (Ax - b)^T(Ax - b) \)

- הפתרון הנדרש הייחוד למשהו פתרון מפריד המספר

- \((A^TA)x^* = A^Tb \)

- פתרון זה יושב "ע"" פירוק לא ליניארי דע"" פירוק נserir ""ריי ו- סיוון

- פירוק (כ-כר ארוג מיניימום) המפריד את \(A^TA \) יחיבת מד预案

משקף: פירוק LU (ושלחנויות) לרותיתים עם לפטרון בעייתי ה-LS
3. מinnacleית של בעיות ריבועיות

עד כה הנחנו כי \(A^T A \) חויובי מוגדרת. מה קורה אם זה לא המצב?

נחנו למשפט המקורי, וטסף על תיוקו:

משפט: ב בחיי החזקה היפרבולים

\[
p(x) = x^T K x - 2x^T f + c
\]

המאותות "ע", \(\{ K, f, c \} \) ו\(K \) חויובי מוגדרת, אז לכל המקורים הממויים \(K x^* = f \)

יהיה פטרון אופטימי של הבぅה, עם עער המיניום

\[
p(x^*) = c - (x^*)^T K (x^*)
\]

3. מinnacleית של בעיות ריבועיות

הכוונה: המוענה, הנקראת בשעות על אוטומט เมברוב. אנו נניח כי \(x \)

הקטור בידנו \(x^* \) מת罡 את המשואנת \(Kx^* = f \)

\[
p(x) = x^T K x - 2x^T f + c = x^T K x - 2x^T K x^* + c
\]

לכל:

\[
= (x - x^*)^T K (x - x^*) + c - (x^*)^T K (x^*)
\]

בתבות שני אมงคล, בלש היית \(K \) חויובי מוגדרת, בורר ש-

\[
(x - x^*)^T K (x - x^*) \geq 0
\]

ולמעשה ביטוי זה חדש לטרים המיניים, \(0 \), עבר \(x \). לכן, כל פטרון

כזה ייוון נקודת מיניום גולבלית, עקר הפונקציה בקדוות, ולא ייוה

זה לאavras עובר פטרון ייחד.
3. מטריצי של בטיעת ריבועיות

آن תונות שאמו עמודות של \(A \) תליות ליניאריות – אハ באשטלוח

אותיר, היא מטריצה חיובית חיצונית \(A^T A \) – אָי לִבְיָה ה- \(\text{LS} \)

tנייה הקבוצת אינספור של פתרונות, כי למסתראות

\[
Kx^* = \mathbf{f} \quad \Leftrightarrow \quad A^T A x^* = A^T \mathbf{b}
\]

יש אינספור פתרונות

לעננה זה ממלא מספר שאולות:

1. אם \(A \) מתחלים ממאמד שApiController \(-b \) - מודע שיווה זה בור

2. אם \(A^T A \) מטענה והשונות השארת \(\text{שתחבילה יש לא פתרון} \) \(\text{כוא פתרון} \) \(\text{כוא פתרון} \) \(\text{כוא פתרון} \)

3. אם \(A \) "ה"ול תחקג עם \(\text{אמסים שApiController} \) \(\text{מגמה} \) \(\text{שאנいう} \) \(\text{?PSD} \)

3. מטריצי של בטיעת ריבועיות

\[
p(x) = x^T Kx - 2x^T \mathbf{f} + c
\]

גרא שאינא תונות� שApiController \(\text{קיים} \) \(\text{והייבים לקים} \)

אם \(K \) בור או \(\text{ימי שיתור} \) \(\text{ויורכחת} \)

dונית: \(\text{גָּנְי} \) \(\text{כְּי} \)

פתרון

 sonra longer שתוכית להראות \(\text{מידן} \) \(\text{מידן} \)

\[p(x, y) = x^2 - 2x - 2y + c \]
3. מיניימיזציה של בעיות ריבועיות

$$\min_\mathbf{x} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2$$

אם-existent, ניתן להימצא המהמה מחברת

$$\mathbf{K} = \mathbf{A}^T \mathbf{A} ; \quad \mathbf{f} = \mathbf{A}^T \mathbf{b}$$

עולה חברה인 לקיים

במקרה זה אנו חוזרים וnotation כי הפתרון

$$\mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{b}$$

אייסופיט, והם חיובים לקיים

נתונים התוילה לעניין כמות הפתרונות:

- נניח כי נון ידוע פתרון קבוע לשנתנו Aסקנה A,
- לנתונים A_null-Space יש את \(\mathbf{A}^T \mathbf{A} \mathbf{d} = 0 \)
- לכל \(\mathbf{d} \) لدينا \(\mathbf{A} \mathbf{x}_0 + \alpha \mathbf{A} \mathbf{d} \)
- לסכום פתרון מתחרה \(\mathbf{x}_0 + \alpha \mathbf{A} \mathbf{d} = \mathbf{A} \mathbf{b} \)

3. מיניימיזציה של בעיות ריבועיות

$$\min_\mathbf{x} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2 \quad \Rightarrow \quad \mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{b}$$

השובה: הקוטור \(\mathbf{A}^T \mathbf{b} \) עד נורס מועמודות \(\mathbf{A}^T \mathbf{A} \) כי רק הקוטרים

שאנונים לשורות \(\mathbf{A} \) לא נורס מועמודות המטריצה \(\mathbf{A}^T \mathbf{A} \) של \(\mathbf{A} \) עצמן

מיון של המשושה המבנהויו כי הוא ייזוף ליניארי של שורות \(\mathbf{A} \)

הנמעה: נניח כי \(\mathbf{A} \) صف יוצר מועמודות משותות

התקודר

אות צורות

לייניארי

Sharovat

A

A^Tb

A^Tb

A

A^Tb

A
3. מיניימציה של בעיות ריבועיות

הערה: חזור לფרשות של בעיית LS בכפריית התלו. נוחות לון וקטור
ב, ורצוגנו למשתת את התלו על אוסף של וקטורים המוקדשים אי
עמורוזיות של A. ראינו כי הדריך ליצירת התלו נינה

\[\min_{x} \left\| \sum_{k=1}^{K_n} x_k v_k - b \right\|_2^2 = \min_{x} \left\| Ax - b \right\|_2^2 \]

אם עמורוזת A תליגים לייניארית, אנו

mdbים כי יש אניגות פתרונות לגביית ה-LS,

אך зат בתימום של וקטור הגלים, \(x \)

אם זא, כל פתרונות אלו יובילו לאוזן

וקטור התלו \(Ax \) - \(\text{למה?} \) מהי הה сахור הניואמותי למסב זה?

4. גזרת בטויה מטורייזים-וקטורים

חזור לדגמה שבבים \(m \)

ה ScrollView המוצעת هنا

\[\min_{x} \left\| Ax - b \right\|_2^2 = \min_{x} \left\| \begin{bmatrix} 7 & 10 \\ 5 & -4 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 10 \\ -12 \\ 3 \end{bmatrix} \right\|_2^2 \]

"הפרתמ התכל על " הנותחת "שנחתה עליה מנימה"

\[x^* = \left(A^T A \right)^{-1} A^T b = \left(\begin{bmatrix} 7 & 10 \\ 10 & -4 \\ 0 & 2 \end{bmatrix} \right)^{-1} \begin{bmatrix} 7 & 10 \\ 10 & -4 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 10 \\ -12 \\ 3 \end{bmatrix} \]

\[= \begin{bmatrix} 74 & 50 \\ 50 & 120 \end{bmatrix}^{-1} \begin{bmatrix} 10 \\ 154 \end{bmatrix} = \begin{bmatrix} 1.0188 \\ 1.7078 \end{bmatrix} \]
4. גזרת בטוים מצטברים-וקטוריים

לאفتحו את הסוגריים,(PC) המקבילים את \(p(x)\) המובאים למכילים:
\[
p(x_1, x_2) = (7x_1 + 10x_2 - 10)^2 + (5x_1 - 4x_2 + 12)^2 + (2x_2 - 3)^2
\]
\[
= 74x_1^2 + 120x_2^2 + 100x_1x_2 - 20x_1 - 308x_2 + 253
\]

אם נרצה, נוכל להציב פונקציה \(p\) למקסימום בקולם - נגזור את הפונקציהبحث על שלוש לועלים ו thép נגזרות אולח:
\[
\frac{\partial p(x_1, x_2)}{\partial x_1} = 2 \cdot 74x_1 + 100x_2 - 20 = 0
\]
\[
\frac{\partial p(x_1, x_2)}{\partial x_2} = 100x_1 + 2 \cdot 120x_2 - 308 = 0
\]

4. גזרת בטוים מצטברים-וקטוריים

\[
\frac{\partial p(x_1, x_2)}{\partial x_1} = 2 \cdot 74x_1 + 100x_2 - 20 = 0
\]

\[
\frac{\partial p(x_1, x_2)}{\partial x_2} = 100x_1 + 2 \cdot 120x_2 - 308 = 0
\]

\[
x^* = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_{\text{OPT}} = \begin{bmatrix} 74 & 50 \\ 50 & 120 \end{bmatrix}^{-1} \begin{bmatrix} 10 \\ 154 \end{bmatrix} = \begin{bmatrix} 1.0188 \\ 1.7078 \end{bmatrix}
\]

ברישום אחר:

וזו בדיקה נמצאת הפתרון שבעה השתמשנו ... והזזלא מקורה!
4. גדרת ביתויים מצטברים-וקטוריים

ה UIScrollView בה את שלושי אי

\[p(x) = \|Ax - b\|^2_2 = (Ax - b)^T (Ax - b) \]

מהו וקטור הגרדיאנט שלScrollView ז"ח

הנגורד ילבנין לアイפס

ScrollView המטרה: קבלת ביתוי וקטור-מתriseי וקטור-גרדיואנט ז"ח

ScrollView כיון שהמטרה נראית כשקה להעשות, נחתל במקורה פשיטה

ScrollView 37

ScrollView 4. גדרת ביתויים מצטברים-וקטוריים

ScrollView נגין כיScrollView שלפנינו בניה מ sharedPreferences האחת, דחינה

\[p(x) = (ax - b)^2 = \left(\sum_{k=1}^{n} a_k x_k - b \right)^2 \]

ScrollView \[\nabla p(x) = \begin{bmatrix} \frac{\partial p(x)}{\partial x_1} \\ \frac{\partial p(x)}{\partial x_2} \\ \vdots \\ \frac{\partial p(x)}{\partial x_n} \end{bmatrix} = \begin{bmatrix} 2 \left(\sum_{k=1}^{n} a_k x_k - b \right) a_1 \\ 2 \left(\sum_{k=1}^{n} a_k x_k - b \right) a_2 \\ \vdots \\ 2 \left(\sum_{k=1}^{n} a_k x_k - b \right) a_n \end{bmatrix} = 2 \left(\sum_{k=1}^{n} a_k x_k - b \right) \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \]

ScrollView \[\nabla p(x) = 2a^T(ax - b) \]
4. גזרת ביטויים מטריאלים-וקטוריים

\[p(x) = (a_1 x - b_1)^2 + (a_2 x - b_2)^2 \]

נסברمعنى התפונקציה

\[p(x) = \begin{bmatrix} a_1 x - b_1 \\ a_2 x - b_2 \end{bmatrix}^2 = \begin{bmatrix} -a_1 - x \\ -a_2 \end{bmatrix} - \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \|A x - b\|^2 \]

ביינו זה לא י웅 אלא

ובמקורה זו, במל ליאיריס הגנרל, נקבל

\[\nabla p(x) = 2a_1^T (a_1 x - b_1) + 2a_2^T (a_2 x - b_2) = 2 \begin{bmatrix} a_1^T \\ a_2^T \end{bmatrix} \begin{bmatrix} a_1 x - b_1 \\ a_2 x - b_2 \end{bmatrix} = 2A^T (A x - b) \]

4. גזרת ביטויים מטריאלים-וקטוריים

مصא לא קיים להשתכון שבמקורה הכללי, עם \(m \) מספרות

\[p(x) = \sum_{k=1}^{m} (a_k x - b_k)^2 = \begin{bmatrix} -a_1 - x \\ \vdots \\ -a_m - \end{bmatrix} - \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} = \|A x - b\|^2 \]

\[\nabla p(x) = 2 \sum_{k=1}^{m} a_k^T (a_k x - b_k) = 2 \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix} \begin{bmatrix} a_1 x - b_1 \\ \vdots \\ a_m x - b_m \end{bmatrix} = 2A^T (A x - b) \]

וקטור הגזריאנטים וינו
4. גזרת ביטויים מטריצים-קוטורים

מותידה A בגרדיאנט של השונות על 2 העמודות:
- הקוטור x באורכף ו ABI.
- הקוטור y באורכף ו ABI.
- ערכים/generated את הערכים במיוחד עבור ייחודי הקוטור
 (במימדי הeczyев), הקוטור זה צרכ לזמן
 באורכף, כי אין מחשבים זה煙די

\[\nabla p(x) = 2A^T(Ax - b) \]

4. גזרת ביטויים מטריצים-קוטורים

رأינו כי عبر הפותחה:
- הקוטור הגרדיאנט הוא

\[\nabla p(x) = 2A^T(Ax - b) \]

איפוס הגרדיאנט מוביל לשושואת הגרדיאנט

\[A^T A x = A^T b \]

שנכבר

הערה: באופים שונים ניתן להאואר כל הגנרטור השותה של הפונקציה

הופי - הגרדיאנט ה-\(A^T \) הפונקציה \(A^T A \) אופים

מינימום אמדוייני בכת השהגורט חיות חיות חיות חיות חיות

במצרים ...
4. גזרת בטיעון מטריציים-קוטוריים

מה באשר לפונקציה הבמ暄ת האחת:

\[p(x) = x^T K x - 2 x^T f + c \]

נטפל במקריה חד-מימדית, על מונח העניין מה הנסחבו הכללים ...

\[p(x) = x^T K x - 2 x^T f + c =
= [x_1 \ x_2] \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} [x_1 \ x_2] - 2 [x_1 \ x_2] \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} + c =
= k_{11} x_1^2 + k_{12} x_1 x_2 + k_{21} x_1 x_2 + k_{22} x_2^2 - 2 f_1 x_1 - 2 f_2 x_2 + c \]

4. גזרת בטיעון מטריציים-קוטוריים

וכלומר, עלינולגזור את הביטוי הבאות בים ל- \(x_2 \rightarrow -1 \) \(x_1 \):

\[p(x) = k_{11} x_1^2 + k_{12} x_1 x_2 + k_{21} x_1 x_2 + k_{22} x_2^2 - 2 f_1 x_1 - 2 f_2 x_2 + c \]

\[\nabla p(x) = \begin{bmatrix} 2 k_{11} x_1 + k_{12} x_2 + k_{21} x_2 - 2 f_1 \\ 2 k_{22} x_2 + k_{12} x_1 + k_{21} x_1 - 2 f_2 \end{bmatrix} \]

מתקוב:

\[\nabla p(x) = 2 \begin{bmatrix} k_{11} & (k_{12} + k_{21})/2 \\ (k_{12} + k_{21})/2 & k_{22} \end{bmatrix} [x_1 \ x_2] - 2 [f_1 \ f_2] \]

\[\nabla p(x) = 2 (K x - f) \]

בשל סימטריות \(K \), הגרדיאנטים יнные, צפוניים, נסחאו זו כוכנה עם במעדים גזולים יוניים.
4. גזירת בטויים מרזיזים-קוטורים

מסתבר כי מסחותון של חורף וمواطن של מיאוד השבטים ובנויים
אוסטרמייצים, בחשון ואריצים, ויפול במשלואות דיפרנציאליות.

ישן המסחותנוד ברג רוספוף, א어서 לא נבז אוח צאל.

לדומה, המטר המבה מבי רישמה אוכלי של המסחותנוד כללה

5. התאמת עקומת לטונים

גינה כי גחיו לכו אוספ צימי, לטונים

המתנים מוקדש במעור

גניה כי גחיו צימי כיוקדש אלא

השוואת ליפור על קי ישיר,

הכיתבה מסתישת עד ידיה והן

.PREFERRED מחט.

b=αt+β

грани לאומאן אט היישר

שיטים ביוור לטונים
התרמצת עקומת ליניאריות

1. רצוננו למצוא את הפרמטרים של הישר \(\alpha, \beta \) לשתי ימי בואן

mitzavim ליניאריים

2. נראיה שהובהטת שלפנינו היא בעיית ריבועים פחותים קללאסיית.

המשימה הינה:

\[
\min_{c, \beta} \sum_{k=1}^{m} (\alpha t_k + \beta - b_k)^2
\]

נ.DisplayStyle \(\mathbf{A} \) את המטריצה

והםktor \(\mathbf{b} \) בואן הבאה:

\[
\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix} \approx \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ 1 & t_3 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} \beta \\ \alpha \end{bmatrix} = \mathbf{A} \mathbf{x}
\]

אז הביעה שלפנינו אينة אלא

\[
= \min_{\mathbf{x}} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|^2_2
\]

5. התירצית עקומת ליניאריות

מה המשמעות הגיאומטרית של פתרון בעיית \(\text{LS} \):

\[
? \min_{\mathbf{x}} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|^2_2
\]

כל פתרון שיצא יוצר ט_preview

tבוקודות ילבי הנקודות המוצעות

\[
r_k = \alpha t_k + \beta - b_k
\]

 dames ריבועי טחיות

אליה – היא זה השיא

.clf הסמך למשר בפתור

\[
\text{LS}
\]

48
הнтאת עקוםת ליניארי

הדרה אל האלגברה: הביעה הג討論ו.

\[\min_x \left\| \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix} - \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ 1 & t_3 \\ \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} \beta \\ \alpha \end{bmatrix} \right\|_2^2 = \min_x \left\| Ax - b \right\|_2^2 \]

הפתרון הוא

\[x^* = \left(A^T A \right)^{-1} A^T b = \left[\sum_{i=1}^{m} t_i \right]^{-1} \left[\begin{bmatrix} \sum_{i=1}^{m} t_i^2 \\ \sum_{i=1}^{m} t_i b_i \end{bmatrix} \right] \]

אם המטריצה הפיכה? אם הפתרון ייחד? ד"ע 2-נקודות שלושה לUvsית זאת. למה?

הнтאת עקוםת ליניארי

הנה פגישת אוחרת לאוותי טיפולי

נתיב חדש פונקציה במסלול הממרכזים

\[\phi_1(t) = 1, \quad \phi_2(t) = t \]

הקירוב שמם מיצב זה זירוף של שתי פונקציות של המרכרה

\[f(t) = \beta \phi_1(t) + \alpha \phi_2(t) = \alpha t + \beta \]

קירוב הז\-LS שGetType מיצב את הקורדוט המרכנה ומבקש שינוי

\[p(\alpha, \beta) = \sum_{k=1}^{m} \left(\beta \phi_1(t_k) + \alpha \phi_2(t_k) - b_k \right)^2 \]

\[\frac{\alpha, \beta}{\alpha, \beta} \rightarrow \min \]
החתמה עלמות ליניאריות

בהוא גם כי, יחר, בינתון סט ליניארי

ליניאריים ידיל קירוב.

הקירוב נועשה באמצעות משוואה של פונקציית ר輩

$$\{\phi_k(t)\}_{k=1}^p$$

אשר מצפוי לניירות:

$$f(t) = \sum_{k=1}^p x_k \phi_k(t)$$

gעלוים בסיפווד זה הם

$$x_1, x_2, x_3, \ldots, x_p$$

החתמה עלמות ליניאריות

אנו יצאיים לדרק על הביצוי

$$\{\hat{x}_i\}_{i=1}^p = \text{Arg min}_{\{x_i\}_{i=1}^p} \sum_{i=1}^m \left(\sum_{k=1}^p x_k \phi_k(t_i) - b_i \right)^2$$

ואן בטרות המשריטות-וקטורית:

$$\begin{bmatrix}
\phi_1(t_1) & \phi_2(t_1) & \cdots & \phi_p(t_1) \\
\phi_1(t_2) & \phi_2(t_2) & \cdots & \phi_p(t_2) \\
\phi_1(t_3) & \phi_2(t_3) & \cdots & \phi_p(t_3) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_1(t_m) & \phi_2(t_m) & \cdots & \phi_p(t_m)
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_p
\end{bmatrix}
- \begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\vdots \\
b_m
\end{bmatrix}
= \|A\bar{x} - \bar{b}\|_2^2 \xrightarrow{\bar{x}} \text{min}$$
ת海外市场עקומת לטון

השימו לב שהכותרתvla-ליניארייתשהביעה(Convert to natural text: "The least squares method")

בעмаркזת \(A \), ואילו לכל השעיה שלפונה יינה בעיית \(\mathcal{L} \)

المعיאית \(\frac{\|A \mathbf{x} - b\|_2}{\mathbf{x}} \rightarrow \min \)

המקדיםיה ':'האופטימליים מתוכנו של

\[A^T (A \mathbf{x} - b) = 0 \Rightarrow \hat{\mathbf{x}} = (A^T A)^{-1} A^T b \]

הקירוב עצו בסועו של מספר משועי און התחלפת ההבאה לטון

\[\hat{f}(t) = \sum_{k=1}^{p} \hat{x}_k \phi_k(t) \]

 bomber

בעמקו האופייני לימי

הוא זרם רבוע הحذرונות החזונות

התמורה לטון

\[\hat{f}(t) = \sum_{k=1}^{p} \hat{x}_k \phi_k(t) \]

מה נוכל לעשת

עם הקירוב

שתחפקבך?

- ניקיון ררוע
- הגדלת "רודולפייה" (אינו apropiyov)
- ניבי (אינו apropiyov)
- דריה
- גלוי זרימה
- ...
החתמת הקומוטות ליניות

\[\phi_k(t) \big|_{k=0}^{P} \]

ミים הפונקציות

|| יש חפוסMoh التיבות, זו

נעדות מותק ההנה המשימה

דומגה – פולינום

במקרה זה

המטריצה

בגלות נכון

הומרבע

Vandermonde

<table>
<thead>
<tr>
<th>1</th>
<th>t_1</th>
<th>t_1^2</th>
<th>t_1^p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t_2</td>
<td>t_2^2</td>
<td>t_2^p</td>
</tr>
<tr>
<td>1</td>
<td>t_3</td>
<td>t_3^2</td>
<td>t_3^p</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>t_m</td>
<td>t_m^2</td>
<td>t_m^p</td>
</tr>
</tbody>
</table>

החתמת הקומוטות ליניות

: Vandermonde

אם המטריצה ריבועית (כלומר, (p=m-1))

מטריצה זו מסתפקת לפי היפך אם ומטריצה ש novità המטריצה罩عون זומן וזו." עודדה זו דוגמה

לה מספרakhir – בהינתן m+1 תיודונים罩عون,

ועבר דרכן פולינום אוחד יחיד מדרגה m

אם יש ייחית תיודון מדרגה הפולינום,

המטריצה罩عون דרגה 말יאה אם זה.

знаком זה המדה, לכל לעונית הקירוב שלנו קיים פתרון יחיד
5. ההאמות עקומות לנהוגים

\(\{ \phi_k(t) \}_k = \left\{ \cos \left(\frac{2\pi kt}{M} \right), \sin \left(\frac{2\pi kt}{M} \right) \right\}_{k=0}^P \)

דוגמה - פונקציות הרמוניות

כר צורת המטריצה A:

<table>
<thead>
<tr>
<th>1</th>
<th>(\cos \left(\frac{2\pi m}{M} \right))</th>
<th>(\sin \left(\frac{2\pi m}{M} \right))</th>
<th>(\cos \left(\frac{2\pi mL}{M} \right))</th>
<th>(\sin \left(\frac{2\pi mL}{M} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\cos \left(\frac{2\pi m}{M} \right))</td>
<td>(\sin \left(\frac{2\pi m}{M} \right))</td>
<td>(\cos \left(\frac{2\pi mL}{M} \right))</td>
<td>(\sin \left(\frac{2\pi mL}{M} \right))</td>
</tr>
<tr>
<td>1</td>
<td>(\cos \left(\frac{2\pi m}{M} \right))</td>
<td>(\sin \left(\frac{2\pi m}{M} \right))</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>1</td>
<td>(\cos \left(\frac{2\pi m}{M} \right))</td>
<td>(\sin \left(\frac{2\pi m}{M} \right))</td>
<td>(\cos \left(\frac{2\pi mL}{M} \right))</td>
<td>(\sin \left(\frac{2\pi mL}{M} \right))</td>
</tr>
</tbody>
</table>

5. ההאמות עקומות לנהוגים

Demo-LS-3.m הדגמ נושא זה ע’וי, הרצת
6. ריבועים פחותים ממקשים

נחותו שלجريית התיאורית-okimets למדבר ונפ—even

час- היא מדד לאימוניית של הנקודה -عرו בררו לאימוניות בקודה

למשל, נניח שולוקדה הצובה או רציים לחת מת MSR יער שיאה הריגה

לשקף את המ’autres הח洢 של שמאל השיאה הריגה

אנו רציים להחלים לנתונים

בקל קורס מתפרף

פ (ט) = ∑ מקסיק לonta

כשלוקדה את \(\sum w_i \) בשברו

6. ריבועים פחותים ממקשים

הבוטיש את פריסות להביא למידומוב או

\(\{ \hat{x}_i \}_{i=1}^{p} = \text{Arg min}_{\{x_i\}_{i=1}^{p}} \sum_{i=1}^{m} w_i \left(\sum_{k=1}^{p} x_k \phi_k\left(t_i\right) - b_i \right)^2 \)

\(\sum_{i=1}^{N} w_i r_i^2\left(x\right) \)

המשקולות מדריגה Decoration שאות השיגיאות של כל לקודה במקסימום

בעיית ה- H- תוגדות בברוך מתניית אלכסונית \(\text{וסך sig} \)

המשקולות באלכסונית הרואית

\(\left(Ax - b\right)^T W\left(Ax - b\right) = \|Ax - b\|_W^2 \xrightarrow{\text{min}} \)
6. ריבועים פחסונים מוסכלים

פתוחת הסוגים ב-PRT זה תגלתبعה ריבועית חסדה, דומה

$(Ax-b)^{T} W (Ax-b) = x A^{T} W A x - 2 x^{T} A^{T} W b + b^{T} W b$

מכאן נובע כי פתרון לבעיית-LS במקורה זה x^{*}, חיבב לקול

$A^{T} W A x^{*} = A^{T} W b$

פתורון זה כייה ייחודי אם עמודות A ב"ל"chodząב של המשקלות W באלכסון שלח W חביבים משלים. למה?

Weighted Least-Squares (WLS) שיטה זו קרויה

7. יתרה!---ה方も---"-LS

ברצוננו להציג

הרבבותנוסף

ל-LS על מונת

לقيم מציב

של אנוסף

פתרון

אינסף פתרון

נערכים משואות

$Ax = b$

 LS

$\min_{x} \|Ax - b\|^{2}$

תכסינה זו

קריאה

יתר-ה Filename
7. רגולריזציה מעברות

 BF: המודל מתבשל "אין-מתiras" במערכות משואות \(Ax=b \) יוכל להטיל

- בלשון המטissent (פתורון יידי או אנסף פתרון)?

אפשרטוט א':
- הגה כי יש יותר משואות מגעולים, דרجة של \(A \) מתאימה, \(b \) לא Inline
- A
- \(\text{A}^T \text{A} \) הפיכה נולק של פתרון יידי
- \(\text{A}^T \text{b} \) במספרים
- \(\text{A} \)جلسת \(\text{A}^T \text{A} \) במחלקה \(\text{A}^T \text{b} \) לबיעית \(\text{A} \)

אפשרטוט ב':
- הגה כי אין עדנים במקבלי של יותר משואות מגעולים, דרجة של \(A \) מתאימה
- \(\text{A}^T \text{A} \) הפיכה נולק של פתרון יידי
- \(\text{A}^T \text{b} \) במספרים
- \(\text{A} \)جلسת \(\text{A}^T \text{A} \) במחלקה \(\text{A}^T \text{b} \) לברית \(\text{A} \)

7. רגולריזציה מעברות

ה羮ון הבסיס: פתרון של בטיעי \(\text{A} \) להנוז \(\text{A}^T \text{A} \) המשואות הנורמלית

(\(\text{A}^T \text{A} \)) \(x^* = \text{A}^T \text{b} \)

- רבי פתרון קורח כשר המטריצה \(\text{A}^T \text{A} \) מכל הפיכת \(\text{A}^T \text{b} \)
- סינגולריות

אבחרון המטריצה \(\lambda > 0 \) (ןעırken \(\text{A}^T \text{A} + \lambda \text{I} \) איז מטריצת

\[\forall x \neq 0, \quad x^T (A^T A + \lambda I) x = \|A x\|_2^2 + \lambda \|x\|_2^2 \geq \lambda \|x\|_2^2 > 0 \]

- תץ שוני בטיעי \(\text{A} \) להנוז \(\text{A}^T \text{A} + \lambda \text{I} \) כר
- \(\text{A}^T \text{b} \) של המשואות הנורמלית חדשית תחת

(\(\text{A}^T \text{b} \)) \(x^* = \text{A}^T \text{b} \)
7. רגרוליםית לביעות LS

משפט: לゅבעה הריבועית הבהא
\[\min_x \|Ax - b\|_2^2 + \lambda \|x\|_2^2 \]
יש פתרון ייחודי הנותן על
\[x^* = \left(A^T A + \lambda I \right)^{-1} A^T b \]

הבטויו שלחוטסז אוזו הרגרוליםית, והוא נקרא גם יי חומצ אוט
הובהה לרגוליםית (מויתב)
הדעויו הזה מיווכס לחוטים חוכרים רוסים שיעוף בשעת השישים של
המאות העשרים, טיקוקוב איברני. שיטתי זו זכהת לפגולריוות עצומה
אינו דון רק בצק האלגבר, שיר היעדו זה

65

7. רגרוליםית לביעות LS

הכחה: פשים נגור את הפוקציה (כעט אוזו ידיעא יא) והשואו לאימס
\[\min_x \left\{ \|Ax - b\|_2^2 + \lambda \|x\|_2^2 \right\} \]
\[p(x) \]
\[\nabla p(x) = 2A^T (Ax - b) + 2\lambda x = 0 \]
\[\Rightarrow \left(A^T A + \lambda I \right) x = A^T b \]

הערת: הרגרוליםית כוש מחשורפת פטרונות "קצרים" ב
הкосה המושקעל פטרון "אורו"
7. Regularization by Constraints

\[\min \|Ax - b\|^2_2 + \lambda \|Cx\|^2_2 \]

By making \(C^T C \) positive definite, the solution will be unique and close to \(b \).

If we use the Lagrange method, the regularized solution can be written as:

\[\min_x \|x\|^2_2 \quad \text{s.t.} \quad Ax = b \]

7. Regularization by Constraints

To solve, find a non-negative, regularized matrix \(\lambda \) that satisfies the constraints:

\[\min_x \|Ax - b\|^2_2 + \lambda \|Cx\|^2_2 \]

The solution can be written as:

\[x^* = (A^TA + \lambda C^TC)^{-1} A^Tb \]

Are you familiar with the constraint? \(\lambda \) is the regularization parameter, but is it known beforehand? When estimating the covariance matrix, is it known in advance? We often have no prior knowledge of the covariance matrix.
8. הדגמה — ניקוי רעש מאוזôn דיבור

כמה עבדות לסיפוט פשוטות:

- את דיבור זה ועלשה וקוטר של מספרים המתחרים את יצומת ההואות
- כנגד גם ר.’ לא נטבך על אוזן_cls בואור 250,000 זכרים
- השמיע מוקלט, באפסים 44100 מספרים כל שניה (במריתים קצבים)
- היו אומות שלן מתיחות דיבור בואור של c-6 שניות
- המ_noise מפריש وغير מตน על מספרים הרכזים (בראש-חללים)
- רעש באז האוזן דיבור ו.goal לתוך המ_noise לא מתעמד
- אוזן רעים ל zwłות אוזנה שוניםannie יזהה את הדבירה המשמירה

הדברים מציעים את מה כי建档 הדגמה לסיפוט של LS. הששים

לעבורה ש:

- קיימת שיווק יוצר את מחמאת הדיבור רעש דיבור
- הדבירה מזאתה את דיבור שתיהן עם דוגма על הקשר - LS

אות דיבור מЌור
אות דיבור רעש
8. הדגמה – ניקוי רעש מאוזון דיבור

לכל נקודה בגרフラ שול קלור פולימר
shall הקטגוריה.wrapper אוגר פולימרים
לכל חקל קלור של קלור פולימר
לא הגיוני لكل המחלות של כל 250,000 האלאימנות
של הקטגוריה,クロリ オーム פולימרים.
הנישה התוכנית את את המשותפ מסיב
צגמה לכל חלון עניין של סשת ר שאיון
ולמקט שוה נמה פולימר. ש科教ור עבוד
לכל דגמה בקטגוריה של כל
הלאורה אומר ש宏观 עמידם לפלוט 250,000 בטון 51 – בפעול של זה אני כ.
כפי שגראו מיר.

8. הדגמה – ניקוי רעש מאוזון דיבור

כאמור, לכל דגמה נפת החול סיבבה ובכ해주 התさま פולימרים להנותים
8. הדגמה – נקמי רעש מאוזecret דיבור

ללא לアウ אטמכ בברכבות עיניית ה-LS,_ctr נאמר ש:

• היא דה ולש שדונה קודם ברפרטצא...
• קודה למחשבת – בל כיחס ביעית ה-LS,ctr שפואו מרכיבי, מכיםבcta מותחים
 המטריצא
• שעומת זאמ,וקטר שואת בכניסת לבעית – אלו בדיק הדגימות שבחולים
 שבכר
• כל בטיעת כיו מולידת וקטור מקדמים של הפולינום המקPHPExcel

\[x^* = (A^T A)^{-1} A^T b \]

• מטרה פולינום – מה נושט איית? נשמת בכי מה שנשבך רכ אט הדגימת
 המרכזית,וזה ייבה הער שנותבע קומיקת
• מכיוון שקר,למשנה את מעיינוים רכ ביארב החופש של הפולינום הקירוב

\[\sum_{k=0}^{P} x_k t^k \bigg|_{t=0} = x_0 \]

73

8. הדגמה – נקמי רעש מאוזecret דיבור

\[x^* = (A^T A)^{-1} A^T b \]

למעשה, נקמי הדגימה שבמרכז שלוקל איננה
אלד מכסה פניםית של הדגימה שלוקן
(איבר הוקטר (b) בשורה הראשה של
המטריצא, A^† פעולה זו ידעה משם
הוסףלייה קובולוציה.
8. הדגמה – ניקוי רעש מעודד דויבר

הערה: בסעיף, השיטה שהופעלת לניקוי המדים הרועש ייצעת מ옷ה

משולבל ע"ע על סדרת הכנסה הרועשה על מנה להביא את ניקי.

8. הדגמה – ניקוי רעש מעודד דויבר

ictured Maps: Demo-LS-4.m, תבנית חמה "ע"ה, הרוצה ו

hizman".
8. הדגמה – ניקוי רעש מאוץ דויבר

הדגמ חקק שניל של MATLAB

Demo-LS-4.3