Rectification

Elad Osherov
Taxonomy of SfM problems

Given image correspondences:

- **Camera extrinsic and intrinsic calibration (Resectioning):**
 Calculate camera poses and calibration from known 3D points

- **Triangulation, 3D reconstruction:**
 Calculate 3D point(s) from known camera poses

- **Motion estimation:**
 Compute camera motion (up to scale). Involves multiple view geometry

- **Bundle Adjustment:**
 Compute camera poses and 3D points (up to a similarity transformation)
Epipolar geometry

- Epipolar Plane
- Epipoles
- Baseline
- Epipolar Lines

Adapted from M. Pollefeys, UNC
Epipolar geometry

- **Baseline**: line joining the camera centers
- **Epipole**: point of intersection of baseline with the image plane
- **Epipolar plane**: plane containing baseline and world point
- **Epipolar line**: intersection of epipolar plane with the image plane

Adapted from M. Pollefeys, UNC
Epipolar geometry: terms

- **Epipole**: point of intersection of baseline with the image plane
- **Epipolar plane**: plane containing baseline and world point
- **Epipolar line**: intersection of epipolar plane with the image plane

- All epipolar lines intersect at the epipole
- An epipolar plane intersects the left and right image planes in epipolar lines
• Potential matches for p have to lie on the corresponding epipolar line l'.

• Potential matches for p' have to lie on the corresponding epipolar line l.

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Source: M. Pollefeys
Example
From geometry to algebra

\[X' = RX + T \]

\[T \times X' = T \times RX + T \times T = T \times RX \]

Normal to the plane

\[X' \cdot (T \times X') = X' \cdot (T \times RX) = 0 \]
Matrix form of cross product

\[
\bar{a} \times \bar{b} = \begin{bmatrix}
0 & -a_z & a_y \\
 a_z & 0 & -a_x \\
-\ a_y & a_x & 0
\end{bmatrix}
\begin{bmatrix}
b_x \\
b_y \\
b_z
\end{bmatrix} = \bar{c}
\]

\[
\bar{a} \cdot \bar{c} = 0
\]

\[
\bar{b} \cdot \bar{c} = 0
\]

Can be expressed as a matrix multiplication.

\[
[a_x] = \begin{bmatrix}
0 & -a_z & a_y \\
 a_z & 0 & -a_x \\
-\ a_y & a_x & 0
\end{bmatrix}
\]

\[
\bar{a} \times \bar{b} = [a_x] \bar{b}
\]
Essential matrix

\[
X' \cdot (T \times RX) = 0
\]

\[
X' \cdot (T_x \ RX) = 0
\]

Let \(E = T_x R \)

\[
X'^T EX = 0
\]

This holds for the rays \(p \) and \(p' \) that are parallel to the camera-centered position vectors \(X \) and \(X' \), so we have:

\[
p'^T E p = 0
\]

\(E \) is called the essential matrix, which relates corresponding image points [Longuet-Higgins 1981].
Essential matrix and epipolar lines

\[
p' E^T p = 0
\]

Epipolar constraint: if we observe point \(p \) in one image, then its position \(p' \) in second image must satisfy this equation.

\(E \) is the coordinate vector representing the epipolar line associated with point \(p \)

\(E^T p' \) is the coordinate vector representing the epipolar line associated with point \(p' \)
Essential matrix: properties

- Relates image of corresponding points in both cameras, given rotation and translation
- Assuming intrinsic parameters are known

\[E \triangleq T_x R \]
Stereo image rectification

In practice, it is convenient if image scanlines are the epipolar lines.

- reproject image planes onto a common plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation two homographies (3x3 transforms), one for each input image reprojection

Stereo image rectification: example

Source: Alyosha Efros
Stereo image rectification: why?

- With multiple cameras it can be difficult to find a corresponding point viewed by one camera in the image of the other camera (known as the correspondence problem).
- In most camera configurations, finding correspondences requires a search in two-dimensions. However, if the two cameras are aligned correctly to be coplanar, the search is simplified to one dimension - a horizontal line parallel to the line between the cameras!

- Rectified images satisfy the following:
 - All epipolar lines are parallel to the horizontal axis.
 - Corresponding points have identical vertical coordinates.
Calibrated Rectification - How?

- “A compact Algorithm For Rectification Of Stereo Pairs” [Fusiello et al (2000)]
- 22 Matlab lines
Recap: Camera parameters

- **Extrinsic**: location and orientation of camera frame with respect to reference frame
- **Intrinsic**: how to map pixel coordinates to image plane coordinates
Recap: Camera parameters

- **Extrinsic**: location and orientation of camera frame with respect to reference frame
- **Intrinsic**: how to map pixel coordinates to image plane coordinates
Perspective Projection Matrix

\[
\begin{bmatrix}
\alpha_u & \gamma & u_0 \\
0 & \alpha_v & v_0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
M_{ext} = (R | t)
\]

\[
\tilde{m} \cong \tilde{P}\tilde{w}
\]

\[
\tilde{P} = M_{int} M_{ext}
\]

\[
\alpha_u = -fk_u \quad \alpha_v = -fk_v
\]

- \(\alpha_u\) and \(\alpha_v\) are the focal length in horizontal and vertical axes in pixels
- \(f\) is the focal length in mm
- \(k_u\) and \(k_v\) are the effective number of pixels per mm along \(u\) and \(v\) axes
- \(u_0\) and \(v_0\) are the coordinates of the principal point
- Assume the skew is 0
“A compact Algorithm For Rectification Of Stereo Pairs”

- Projection matrix can be written as
 \[\tilde{P} = [Q | \tilde{q}] = \begin{bmatrix} q_1^T & q_{14} \\ q_2^T & q_{24} \\ q_3^T & q_{34} \end{bmatrix} \]

- For optical center:
 \[0 \succeq \tilde{P}c \succeq QC_{3x1} + \begin{bmatrix} q_{14} \\ q_{24} \\ q_{34} \end{bmatrix} \rightarrow c = -Q^{-1}\tilde{q} \]

- \(c\) are the optical center coordinates

- Projection matrix can be rewritten as:
 \[\tilde{P} = [Q | -Qc] \]
“A compact Algorithm For Rectification Of Stereo Pairs”

- So if $\tilde{P} = [Q \mid -Qc]$.
- The **optical ray** (The line between image point m and C) is:
 \[w = c + \lambda Q^{-1}\tilde{m} \quad \lambda \in \mathbb{R} \]
- The **focal plane** is the plane that contains C which is parallel to the image plane.
- Rectification – Both epipoles are at infinity, that happens when the line C_1C_2 (baseline) is contained in both focal planes.
“A compact Algorithm For Rectification Of Stereo Pairs”

- **Idea**: define two new PPMs, \tilde{P}_n & \tilde{P}_n', by rotating the old ones around their optical centers until focal planes become coplanar.

- **Results:**
 - Epipoles in infinity
 - Epipolar lines are parallel.
 - For horizontal lines, the baseline must be parallel to the new axis of both cameras.
 - Conjugate points must have the same vertical coordinates.
“A compact Algorithm For Rectification Of Stereo Pairs”
“A compact Algorithm For Rectification Of Stereo Pairs”

- Assume that the stereo rig is calibrated – we know \(\tilde{P}_{o1} \) & \(\tilde{P}_{o2} \)
- Positions of old optical centers stay the same, orientation of focal plane changes
- So the new PPM’s are \(\tilde{P}_{n1} \) & \(\tilde{P}_{n2} \)

\[
\tilde{P}_{n1} = A\begin{bmatrix} R & -Rc_1 \end{bmatrix} \quad \tilde{P}_{n2} = A\begin{bmatrix} R & -Rc_2 \end{bmatrix}
\]

- The intrinsic parameters are the same (can choose arbitrarily)
- \(R \) is the same for both PPM’s. Define it by the rows:

\[
R = \begin{bmatrix}
r_1^T \\
r_2^T \\
r_3^T
\end{bmatrix}
\]

- These are the X,Y,Z axes of the camera reference frame in world coordinates
According to the previous definitions we take:

1. The new X axis parallel to the baseline:
 \[r_1 = \frac{(c_1 - c_2)}{||c_1 - c_2||_2} \]

2. The new Y axis orthogonal to X and to k:
 \[r_2 = k \land r_1 \]

3. The new Z axis orthogonal to XY:
 \[r_3 = r_1 \land r_2 \]

4. k is arbitrary unit vector that fixes the position of new Y in the plane orthogonal to X. We take it equal to the Z unit vector of the old left matrix, thereby constraining the new Y to be orthogonal to both X and Z (in the old left coordinates).
In order to rectify (Let’s say the left image) we need to compute the transformation mapping the old image plane \(P_{o1} \approx [Q_{o1} \mid \tilde{q}_{o1}] \) to the new image plane \(P_{n1} \approx [Q_{n1} \mid \tilde{q}_{n1}] \).

We will see that’s the transformation is the collinearity given by the 3x3 matrix \(T_{1} = Q_{n1}Q^{-1}_{o1} \).

Why? For any 3D point \(w \) we can write:

\[
\begin{align*}
\tilde{m}_{o1} & \approx \tilde{P}_{o1}\tilde{w} \\
\tilde{m}_{n1} & \approx \tilde{P}_{n1}\tilde{w}
\end{align*}
\]

The optical rays are:

\[
\begin{align*}
w & = c_{1} + \lambda_{1}Q_{o1}^{-1}\tilde{m}_{o1} & \lambda_{1} & \in \mathbb{R} \\
w & = c_{2} + \lambda_{2}Q_{n1}^{-1}\tilde{m}_{n1} & \lambda_{2} & \in \mathbb{R}
\end{align*}
\]

So \(\tilde{m}_{n1} = \lambda Q_{n1}Q_{o1}^{-1}\tilde{m}_{o1} \quad \lambda \in \mathbb{R} \).
% factorize old PPM
[A1,R1,t1] = art(Po1);
[A2,R2,t2] = art(Po2);

% optical centers (unchanged)
c1 = -R1'*inv(A1)*Po1(:,4);
c2 = -R2'*inv(A2)*Po2(:,4);

% new x axis (baseline, from c1 to c2)
v1 = (c2-c1);
% new y axes (orthogonal to old z and new x)
v2 = cross(R1(3,:)',v1);
% new z axes (no choice, orthogonal to baseline and y)
v3 = cross(v1,v2);

% new extrinsic (translation unchanged)
R = [v1'/norm(v1)
v2'/norm(v2)
v3'/norm(v3)];

% new intrinsic (arbitrary)
An1 = A2;
An1(1,2)=0; %no skew
An2 = A2;
An2(1,2)=0;

% new projection matrices
Pn1 = An1 * [R, -R*c1];
Pn2 = An2 * [R, -R*c2];

% rectifying image transformation
T1 = Pn1(1:3,1:3)* inv(Po1(1:3,1:3));
T2 = Pn2(1:3,1:3)* inv(Po2(1:3,1:3));
function [A,R,t] = art(P)
% ART: factorize a PPM as
P=A*[R;t]
Q = inv(P(1:3, 1:3));
[U,B] = qr(Q);
R = inv(U);
t = B*P(1:3,4);
A = inv(B);
A = A ./A(3,3)
Uncalibrated case

- What if we don’t know the camera parameters?
Uncalibrated case

For a given camera:

\[\bar{p} = M_{\text{int}} p \]

So, for two cameras (left and right):

\[p_{(\text{left})} = M_{\text{left}, \text{int}}^{-1} \bar{p}_{(\text{left})} \]

\[p_{(\text{right})} = M_{\text{right}, \text{int}}^{-1} \bar{p}_{(\text{right})} \]
Uncalibrated case: fundamental matrix

\[
\begin{align*}
\mathbf{p}_{\text{left}} &= \mathbf{M}_{\text{left, int}}^{-1} \bar{\mathbf{p}}_{\text{left}} \\
\mathbf{p}_{\text{right}} &= \mathbf{M}_{\text{right, int}}^{-1} \bar{\mathbf{p}}_{\text{right}} \\
\end{align*}
\]

\[
\begin{align*}
\mathbf{p}_{\text{right}}^T \mathbf{E} \mathbf{p}_{\text{left}} = 0
\end{align*}
\]

From before, the essential matrix \(\mathbf{E} \).

\[
\tilde{\mathbf{P}} = [\mathbf{Q} \mid -\mathbf{Qc}]
\]

\[
\begin{align*}
\left(\mathbf{M}_{\text{right, int}}^{-1} \bar{\mathbf{p}}_{\text{right}} \right)^T \mathbf{E} \left(\mathbf{M}_{\text{left, int}}^{-1} \bar{\mathbf{p}}_{\text{left}} \right) = 0
\end{align*}
\]
Uncalibrated case: fundamental matrix

\[\tilde{P} = [Q \mid -Qc] \]

\[\left(M^{-1}_{\text{right, int}} \bar{p}_{\text{right}} \right)^T E \left(M^{-1}_{\text{left, int}} \bar{p}_{\text{left}} \right) = 0 \]

\[\bar{p}_{\text{right}}^T \left(M^{-T}_{\text{right, int}} E M^{-1}_{\text{left, int}} \right) \bar{p}_{\text{left}} = 0 \]

\[\bar{p}_{\text{right}}^T F \bar{p}_{\text{left}} = 0 \]

Fundamental matrix
Fundamental matrix

- Relates pixel coordinates in the two views
- More general form than essential matrix: we remove the need to know intrinsic parameters
- If we estimate fundamental matrix from correspondences in pixel coordinates, can reconstruct epipolar geometry without intrinsic or extrinsic parameters
Uncalibrated Rectification - How?

- “Quasi-Euclidean Uncalibrated Epipolar Rectification” [Fusiello et al (2008)]
Idea: Find two rectifying homographies.

Homographies:

\[
H_r = P_{nr1:3} P_{or1:3}^{-1} = K_{nr} R_r K_{or}^{-1}
\]

A fundamental matrix of a rectified pair has the form of:

\[
F_r = \begin{bmatrix}
 0 & 0 & 0 \\
 0 & 0 & -1 \\
 0 & 1 & 0
\end{bmatrix} = [u_1]_x
\]

\[u_1 = (1, 0, 0)\]
“Quasi-Euclidean Uncalibrated Epipolar Rectification”

- Therefore:
- Instead of algebraic error – Approximation to geometric error (Sampson error):

\[
\left(H_r m_r^j \right)^T [u_1] \times \left(H_l m_l^j \right) = 0
\]

\[
F = H_r^T [u_1] \times H_l
\]

\[
E^j_s = \frac{(m_r^j)^T F m_r^j)^2}{||[u_3] \times F m_r^j||^2 + ||m_r^j)^T F [u_3] \times||^2}
\]

- Solve \(\{E_s\}^j = 0 \) with least squares (SVD…)

\[
u_3 = (0, 0, 1)
\]
“Quasi-Euclidean Uncalibrated Epipolar Rectification” - Assumptions

- \(K_{nl}, K_{nr} \) Set arbitrarily: \(K_{nl} = K_{nr} = K_{ol} \)
- Original calibration matrices:
 \[
 K_{ol} = K_{or} = \begin{bmatrix}
 \alpha & 0 & w/2 \\
 0 & \alpha & h/2 \\
 0 & 0 & 1
 \end{bmatrix}
 \]
- \(X \) rotation of one image assumed 0.
- Total 6 unknowns: 5 angles and focal length
“Quasi-Euclidean Uncalibrated Epipolar Rectification” - Results
“Quasi-Euclidean Uncalibrated Epipolar Rectification” - Results

Correct correspondences according to RANSAC
“Quasi-Euclidean Uncalibrated Epipolar Rectification” - Results

Left tie points (trapezoid) Right tie points (square)
“Quasi-Euclidean Uncalibrated Epipolar Rectification” - Results
“Quasi-Euclidean Uncalibrated Epipolar Rectification” - Results
Image based motion estimation

- **Input:** 2 images, n image correspondences, camera calibration
- **Required:** Camera motion R, t (up to scale)

Process:
- Estimate essential matrix E from image correspondences
- Recover camera motion from estimated E

Solutions:
- (normalized) 8-point algorithm
- 6-point algorithm
- 5-point algorithm
Image based motion estimation via 8-Point Algorithm

- **Input**: 2 images, camera calibration
- **Required**: Camera motion R, t (up to scale)

- **Steps**:
 - Calculate image correspondences (previous lecture)
 - Compute essential matrix
 - Extract camera motion
Fundamental Matrix Song
Fundamental Matrix Song

After this song, there will be a quiz. Listen carefully!
Exercise

What is the difference between Fundamental Matrix and Homography?
(Both of them are to explain 2D point to 2D point correspondences.)
Fundamental matrix - Properties

- It can be shown that $\forall x : \ l' = Fx$

- Since e' lies on l': $\ e'^Tl' = 0$

- Hence: $\forall x : \ e'^TFx = 0$
 - e' is the left null-space of F
 - Similarly, e is the right null-space of F

- $\det(F) = 0$ - Singularity constraint

- F has 7 degrees of freedom (DOFs):
 - a 3×3 homogenous matrix has 8 DOFs (why?)
 - The singularity constraint removes an additional DOF
Fundamental matrix - Estimation

- Each image correspondence $x \leftrightarrow x'$ contributes a single equation, linear in the unknown entries of F:

 $$x'^T F x = 0$$

- Recalling

 $$x = (x, y, 1)^T$$
 $$x' = (x', y', 1)^T$$

 we get:

 $$x' x f_{11} + x' y f_{12} + x' f_{13} + y' x f_{21} + y' y f_{22} + y' f_{23} + x f_{31} + y f_{32} + f_{33} = 0.$$
Fundamental matrix - Estimation

Given sufficiently many image correspondences \(x_i \leftrightarrow x_i' \) we can compute \(F \)

Single correspondence:
\[
(x'x, x'y, x', y'x, y'y, y', x, y, 1) f = 0
\]

For \(n \) image correspondences:
\[
Af = \begin{bmatrix}
x'_1x_1 & x'_1y_1 & x'_1 & y'_1x_1 & y'_1y_1 & y'_1 & x_1 & y_1 & 1 \\
\vdots & \vdots \\
x'_nx_n & x'_ny_n & x'_n & y'_nx_n & y'_ny_n & y'_n & x_n & y_n & 1
\end{bmatrix} f = 0
\]

What is minimal \(n \)?
Fundamental matrix - Estimation

\[\mathbf{F} = \begin{bmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x'_n x_n & x'_n y_n & x'_n & y'_n x_n & y'_n y_n & y'_n & x_n & y_n & 1 \end{bmatrix} \mathbf{f} = 0 \]

- Need to enforce singularity constraint \(\det(F') = 0 \)

Recall
All epipolar lines should intersect at the epipole.
Fundamental matrix - Estimation

- Need to enforce singularity constraint $\det(F) = 0$
 - Most convenient: Correct F that was estimated via SVD over A
 - How:
 - Replace F by F' that minimizes
 $$||F - F'|| \quad \text{subject to} \quad \det(F') = 0$$
 - via SVD on F

- To reduce sensitivity to noise:
 - Normalize all image points
 - Results in the “Normalized 8-point algorithm”

- Further reading
 - H&Z MVG book, Chapter 11.1
 - Nister’s 5-point algorithm
Fundamental matrix - Estimation

- Given camera calibration, E can be calculated from F
- Recall $E = [t]_\times \; R \in \mathbb{R}^{3 \times 3}$
- Therefore: $t^T E = 0$
 - i.e. t^T is the nullspace of E
- Extract t^T via svd (only up to scale, why?)
 - Left singular value corresponding to zero singular value
- Extract R
Slide Credits

- Trevor Darrell
- Kristen Grauman for most,
- Rick Szeliski and others as noted…
- Vadim Indelman