Computer vision – Edge detection

Elad Osherov Nov 2015 Slides credit Lihi Zelnik-Manor
Problem:

In automated analysis of digital images, a sub-problem often arises of detecting simple shapes, such as straight lines, circles or ellipses.
Primitives detection

Solution?

Edge detection
Why edges?

- We know edges are special
What can cause an edge

- Surface normal discontinuity
- Depth discontinuity
- Illumination discontinuity
- Surface color discontinuity
What can cause an edge

- Reflectance change: appearance information, texture
- Change in surface orientation: shape
- Depth discontinuity: object boundary
- Cast shadows

Applications and Algorithms in CV

Tutorial 3: Edge detection
Finding straight lines

• An edge detector can be used as a pre-processing stage to obtain points (pixels) that are on the desired curve in the image space.

• Due to imperfections in either the image data or the edge detector, there may be missing points on the desired curves as well as spatial deviations between the ideal line/circle/ellipse and the noisy edge points as they are obtained from the edge detector.

• It is often non-trivial to group the extracted edge features to an appropriate set of lines, circles or ellipses.
Fitting in a parametric space

Goal:
- Choose a parametric model to represent a set of features
- Possibly multiple models are required

Main questions:
- What model represents this set of features best?
- How many models are there?
- Which features belong to each model?

Computational complexity:
- Typically we cannot examine all possible models
Difficulty of line fitting in images

- Which points are on which line?
- How many lines?
- Noisy edge detection:
 - Clutter
 - Missed parts
 - Points are only approximately along the line
Grouping & Fitting methods

2 approaches for grouping & fitting

1. Global optimization / Search for parameters
 - Least squares fit
 - Total least squares fit
 - Robust least squares
 - Iterative closest point (ICP)
 - Etc.

2. Hypothesize and test
 - Hough transform
 - Generalized Hough transform
 - RANSAC
 - Etc.
Grouping & Fitting methods

1. Global optimization / Search for parameters
 - Least squares fit
Least square line fitting

Data: \((x_1, y_1), \ldots, (x_n, y_n)\) \(\Rightarrow\) Line equation: \(y_i = mx_i + b\) \(\Rightarrow\) Find \((m, b)\) to minimize:

\[
E = \sum_{i=1}^{n} (y_i - mx_i - b)^2
\]

\[
\frac{dE}{dP} = 2A^TAp - 2A^Ty = 0
\]

\[
A^TAp = A^Ty \Rightarrow p = \left(A^TA\right)^{-1}A^Ty
\]

Matlab: \(p = A \setminus y;\)
Least square line fitting

Question: Will least squares work in this case?
- Fails completely for vertical lines

Question: is LSQ invariant to rotation?
- No. same edge, different parameters

![Least square line fitting diagram](image)
Grouping & Fitting methods

2 approaches for grouping & fitting

1. Global optimization / Search for parameters

 Total least squares fit
Total least square

Distance between a point \((x_i, y_i)\) and a line \(ax+by+c=0\):

\[
d = \frac{|ax_i + by_i + c|}{\sqrt{a^2 + b^2}}
\]

If \((a^2+b^2)=1\) then: \(d = |ax_i + by_i + c|

Unit normal:
\(N=(a, b)\)
Distance between a point \((x_i, y_i)\) and a line \(ax+by+c=0\):

\[
d = \frac{|ax_i + by_i + c|}{\sqrt{a^2 + b^2}}
\]

If \((a^2+b^2=1)\) then: \(d = |ax_i + by_i + c|\)

Find \((a, b, c)\) to minimize the sum of squared perpendicular distances

\[
E = \sum_{i=1}^{n} (ax_i + by_i + c)^2
\]
Total least square

\[
\frac{\partial E}{\partial c} = \sum_{i=1}^{n} -2(ax_i + by_i + c) = 0 \quad \Rightarrow \quad c = -\frac{a}{n} \sum_{i=1}^{n} x_i - \frac{b}{n} \sum_{i=1}^{n} y_i = -a\bar{x} - b\bar{y}
\]

\[
E = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}^2 = \mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}
\]

minimize \(\mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p} \) \quad s.t. \(\mathbf{p}^T \mathbf{p} = 1 \) \quad \Rightarrow \quad minimize \(\frac{\mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}}{\mathbf{p}^T \mathbf{p}} \)

*Solution is eigenvector corresponding to smallest eigenvalue of \(\mathbf{A}^T \mathbf{A} \)
Recap: Two Common Optimization Problems

Problem statement

1. minimize $\|Ax - b\|^2$
 - least squares solution to $Ax = b$

Solution

1. $x = (A^T A)^{-1} A^T b$
2. $x = A \backslash b \ (\text{matlab})$

Problem statement

1. minimize $x^T A^T A x$ s.t. $x^T x = 1$
2. minimize $\frac{x^T A^T A x}{x^T x}$

Solution

1. $[v, \lambda] = \text{eig}(A^T A)$
2. $\lambda_1 < \lambda_{2..n} : x = v_1$
Least square line fitting

Least squares fit to the red points
Least square line fitting:: robustness to noise

Least squares fit with an outlier

Squared error heavily penalizes outliers
Least square line fitting:: conclusions

Good

• Clearly specified objective
• Optimization is easy (for least squares)

Bad

• Not appropriate for non-convex objectives
 – May get stuck in local minima
• Sensitive to outliers
 – Bad matches, extra points
• Doesn’t allow you to get multiple good fits
 – Detecting multiple objects, lines, etc.
Grouping & Fitting methods

2 approaches for grouping & fitting

2. Hypothesize and test

Hough transform
The purpose of the Hough transform is to address the problem of primitives detection by performing an explicit **voting** procedure over a set of parameterized image objects.
Voting

• Problem:
 • We cannot try all possible models.

• Solution by voting:
 • Features (points) vote for the model they are compatible with.
 • Search for models with lots of votes.

• Key ideas:
 • Noise and clutter votes are inconsistent, so will not harm model selection.
 • Ok if not all points are present as long as model gets enough votes.
Hough transform:: Detecting straight lines

A line \(y = mx + b \) can be described as the set of all points comprising it: \((x_1, y_1), (x_2, y_2)\)...

Instead, a straight line can be represented as a point \((b, m)\) in the parameter space.

Question: does \(\{b,m\} \) (slope and intercept) indeed the best parameter space?

Answer: No! \(m \) can get infinite values if the line is vertical.
The Hough Transform

- Transformation from image space \((x, y)\) to Hough space \((m, b)\)
- A line in the image corresponds to a point in Hough space
 - Image \(\rightarrow\) Hough:
 Given a set of points \((x, y)\) find all \((m, b)\) such that \(y = mx + b\)
 - Hough \(\rightarrow\) Image:
 A point \((x_0, y_0)\) in the image is the solution of \(b = -x_0m + y_0\)
- The line that contain both points \((x_0, y_0)\) and \((x_1, y_1)\) is the intersection of the lines \(b = -x_0m + y_0\) and \(b = -x_1m + y_1\)
Hough transform:: Line parameterization

Hough transform is calculated in polar coordinates

The parameter r represents the distance between the line and the origin

θ is the angle of the vector from the origin to this closest point
Hough transform: Line parameterization

Using this parameterization, the equation of the line can be written as:

\[
y = \left(-\frac{\cos \theta}{\sin \theta}\right)x + \left(\frac{r}{\sin \theta}\right)
\]

which can be rearranged to:
\[
r = x \cos \theta + y \sin \theta
\]
Question: Is there a straight line connecting the 3 dots?
Hough Solution:

1. For each data point, a number of lines are plotted going through it, all at different angles (θ) (shown as solid lines).

2. Calculate τ For each solid line from step 1 (shown as dashed lines).

3. For each data point, organize the results in a table.

Example

<table>
<thead>
<tr>
<th>Angle</th>
<th>Dist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>69.6</td>
</tr>
<tr>
<td>60</td>
<td>81.2</td>
</tr>
<tr>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>120</td>
<td>40.6</td>
</tr>
<tr>
<td>150</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>Angle</th>
<th>Dist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>57.1</td>
</tr>
<tr>
<td>30</td>
<td>79.5</td>
</tr>
<tr>
<td>60</td>
<td>80.5</td>
</tr>
<tr>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>120</td>
<td>23.4</td>
</tr>
<tr>
<td>150</td>
<td>-19.5</td>
</tr>
</tbody>
</table>
Hough Solution:

4. Draw the lines received for each data point in the Hough space

5. Intersection of all lines indicate a line passing through all data points (remember: each point in Hough space represent a line in the original space)
Hough transform:: Example

features

votes

Applications and Algorithms in CV

Tutorial 3: Edge detection

Hough Transform
Hough transform:: other shapes
Hough Example On a Real Image

Applications and Algorithms in CV

Tutorial 3: Edge detection

Hough Transform
Hough Example On a Real Image

Showing longest segments found
Hough transform:: effect of noise
Hough transform: effect of noise

features

votes
Hough transform:: random points

features

votes
Random points:: Dealing with noise

Grid resolution tradeoff
- Too coarse: large votes obtained when too many different lines correspond to a single bucket
- Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets

Increment neighboring bins
- Smoothing in accumulator array

Try to get rid of irrelevant features
- Take only edge points with significant gradient magnitude
Random points:: conclusions

Good
1. Robust to outliers: each point votes separately
2. Fairly efficient (often faster than trying all sets of parameters)
3. Provides multiple good fits

Bad
1. Some sensitivity to noise
2. Bin size trades off between noise tolerance, precision, and speed/memory
3. Not suitable for more than a few parameters (grid size grows exponentially)
(RANdom SAmple Consensus): Learning technique to estimate parameters of a model by random sampling of observed data
Algorithm:
1. **Sample** (randomly) the number of points required to fit the model
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model
4. **Reevaluate** the fit according to the inliers

Repeat 1-4 until the best model is found with high confidence. Return the model with the most inliers.
Algorithm:
1. **Sample** (randomly) the number of points required to fit the model
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model
4. **Reevaluate** the fit according to the inliers

Repeat 1-4 until the best model is found with high confidence Return the model with the most inliers
Algorithm:
1. **Sample** (randomly) the number of points required to fit the model
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model
4. **Reevaluate** the fit according to the inliers

Repeat 1-4 until the best model is found with high confidence. Return the model with the most inliers.

RANSAC:: line fitting example
Algorithm:
1. **Sample** (randomly) the number of points required to fit the model
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model
4. **Reevaluate** the fit according to the inliers

Repeat 1-4 until the best model is found with high confidence. Return the model with the most inliers.

RANSAC:: line fitting example

\[N_I = 6 \]
Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model
4. Reevaluate the fit according to the inliers

Repeat 1-4 until the best model is found with high confidence Return the model with the most inliers
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model
4. **Reevaluate** the fit according to the inliers

Repeat 1-4 until the best model is found with high confidence Return the model with the most inliers

RANSAC:: line fitting example

\[N_I = 14 \]
RANSAC:: parameter selection

- \(s \): initial number of points (Typically minimum number needed to fit the model)
- \(N \): number of RANSAC iterations
- \(p \): probability of choosing \(s \) inliers at least in some iteration
- \(\omega \): probability of choosing an inlier
- \(\omega^s \): probability that all \(s \) points are inliers
- \(1 - \omega^s \): probability that at least one point is an outlier
- \(1 - p = (1 - \omega^s)^N \): probability that the algorithm never selects a set of \(s \) inliers

\[
N = \log \left(\frac{1 - p}{1 - \omega^s} \right)
\]
RANSAC:: Simple line fitting example

• Fitting a simple line

A data set with many outliers for which a line has to be fitted

Fitted line with RANSAC; outliers have no influence on the result
RANSAC:: conclusions

Good
- Robust to outliers
- Applicable for larger number of parameters than Hough transform
- Parameters are easier to choose than Hough transform

Bad
- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits