SIMPLE, FAST AND DETERMINISTIC GOSSIP AND RUMOR SPREADING

Bernhard Haeupler

(slides by Moshe Gabel)
Gossiping For Fun and Profit

• Want to spread a nasty rumor, but how?
 • Shouting from the top of a mountain?
 • Broadcast forbidden!

• In a distributed system, which nodes are up?
 • Just because I can’t reach some node, does not mean it is down.

• New node joined, must tell everyone.
The GOSSIP Model

• Unique IDs

• Neighbors and their UID are known

• In each **round**, each node can **exchange** messages with **one** neighbor
 • vs. all neighbors in LOCAL model

• Unlimited message size and local computation
Gossip Broadcast Algorithm

• Surprisingly easy.

• Repeat:
 • Choose neighbor uniformly at random
 • Exchange information

• $O\left(\frac{\log n}{\phi}\right)$ with high probability.
 • Fast on “nice” graphs.
 • And this bound is tight.
Gossip Example
Gossip Example
Gossip – Round 1

Graph representation of gossip propagation in Round 1.
Gossip – Round 1
Gossip – Round 2

1, 3

2, 3

4, 5, 7

4, 7, 8

5, 6, 7, 9

7, 8

1, 2, 3, 6

3, 6, 9

5, 6, 7, 9

4, 5, 9

1, 3

2, 3

4, 5, 7

4, 7, 8

7, 8

1, 2, 3, 6

3, 6, 9

5, 6, 7, 9

4, 5, 9
Gossip – Round 2

1, 2, 3, 4, 5, 9

1, 2, 3, 4, 5, 6, 9

4, 5, 7, 8, 9

4, 5, 6, 7, 8, 9

1, 2, 3, 6

1, 2, 3, 6

5

2, 3, 4, 5, 7, 8, 9

1, 2, 3, 6

3, 5, 6, 7, 9

3, 5, 6, 7, 8, 9

4, 5, 6, 7, 8, 9
Gossip – Round 3

1,2,3,6
4,5,7,8
4,5,7,8,9
1,2,3,4,5,9

5
2,3,4,5,7,8,9
1,2,3,6
3,5,6,7,9
3,5,6,7,8,9
4,5,6,7,8,9
Gossip – Round 3

Nodes 1, 2, 3, 4, 5, 6, 7, 8, 9

- Node 1: 1, 2, 3, 4, 5, 6, 9
- Node 2: 1, 2, 3, 4, 5, 6, 7, 8, 9
- Node 3: 1, 2, 3, 4, 5, 6, 7
- Node 4: 2, 3, 4, 5, 7, 8
- Node 5: 3, 4, 5, 6, 7, 8, 9
- Node 6: 1, 2, 3, 4, 5, 6, 7, 9
- Node 7: 2, 3, 4, 5, 6, 7, 8, 9
- Node 8: 3, 4, 5, 6, 7, 8, 9
- Node 9: 1, 2, 3, 4, 5, 6, 7, 8, 9
Gossip – Round 4

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 9

2, 3, 4, 5, 7, 8

3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7

1, 2, 3, 5, 6, 7, 9

2, 3, 4, 5, 6, 7, 8, 9

3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9
Gossip – Round 4

1,2,3,4,5,6,7,9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9
Gossip – Round 4

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9
Gossip – Round 5

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2, 3, 4, 5, 6, 7, 8, 9
Gossip – Round 5
Gossip – Round 5
Local Broadcast

• Some graphs have bottlenecks – small ϕ.
 • And conductance is complicated and unintuitive.

• Simplify problem to 1-local broadcast: exchange rumor only with local neighborhood.

• Solvable w.h.p with non-uniform gossip $O(\log^3 n)$.

• Repeat D (diameter) times \Rightarrow get $O(D \log^3 n)$ for any graph.
Everything Is Randomized

• These algorithms succeed with high probability.

• Question: is randomness necessary? Can we guarantee success?

• Research has reduced needed random bits...

• But consensus was that some randomness is critical for efficient rumor spreading.
A Deterministic Approach

- Turns out a deterministic approach can be fast.

- A FLOOD primitive: spreads knowledge symmetrically in subset of local neighborhood.

- Exponentially growing structures under nodes.

- If local broadcast not over: structures disjoint.
Exponentially Growing Disjoint Structures

- Structures “under” nodes u and v
Exponentially Growing Disjoint Structures

• Structures “under” nodes u and v
Exponentially Growing Disjoint Structures

- Structures “under” nodes u and v
Basic Notation

• \(\log x \): denotes \(\lfloor \log_2 x \rfloor \)

• \(n \): number of nodes in the graph

• \(R_v \): the set of nodes \(v \) has heard from
 • \(v \) knows the rumors of all \(u \in R_v \)

• Nodes exchange all rumors they know.
Round Robin Flooding

• Given a subgraph with known max degree M.

• Easy to spread rumor to d-neighborhood.

• Each node repeats d times:
 • Spread rumors to all neighbors (max is M)

• Takes dM rounds.
Round Robin Flooding

- Input: m_v neighbors $u_1 \ldots u_{m_v}$ for each node v.
- Input: distance d, max degree $M = \max(m_v)$.

$R_v \leftarrow \{v\}$ (v initially knows only own rumor)

- Iterate d times:
 - For t in $1 \ldots m_v$: exchange R_v rumors with u_i
 - If $m_v < M$, wait $M - m_v$ rounds
 - Add new rumors from $u_1 \ldots u_{m_v}$ to R_v
Round Robin Flooding

Full graph
Round Robin Flooding

Subgraph
Round Robin Flooding

\[M = 4, \ d = 3 \]
Round Robin Flooding

Let's look at who knows node v
Round Robin Flooding

Iteration 1, t = 1
Round Robin Flooding

Iteration 1, t = 2
Round Robin Flooding

Iteration 1, $t = 3$
Round Robin Flooding

Iteration 1, $t = 4$ (wait!)
Round Robin Flooding

Iteration 2 starts, let’s look at neighbors
Round Robin Flooding

Iteration 2 \(t=1 \)
Round Robin Flooding

Iteration 2 ends
Round Robin Flooding

Iteration 3 starts
Round Robin Flooding

Iteration 3 ends
Round Robin Flooding

Run ends
Round Robin Flooding Results

• d-neighborhood of v knows rumor of v

• Equivalently: v knows all rumors of its d-neighborhood

• Symmetry: $u \in R_v \iff v \in R_u$
Deterministic Gossip 1-Local Broadcast

- $R_v \leftarrow \{v\}$
- While not all v’s neighbors are in R_v:
 - Arbitrarily pick neighbor u_i not already in R_v
 - Add u_i (and edge) to subgraph $\{u_1 \ldots u_{i-1}\}$
 - FLOOD with $d = 2 \log n$ hops, $M = \log n$
 - Add rumors to R_v

- Nodes can terminate early (but still flood)
Correctness

• Trivial: algorithm stops only when \(v \) knows about all its neighbors.

• Hence all \(v 's \) neighbors know about \(v \).

• Symmetry will be important in efficiency proof.
 • It comes from the round robin flooding.
1-local broadcast

\[n = 16 \rightarrow d = 2 \log n = 8, \quad M = \log n = 4 \]
1-local broadcast

End of iteration 0
1-local broadcast

After 2 iterations everyone knows about v
Deterministic Gossip Runtime

- Claim 1: at most $\log n$ iterations.

- Claim 2: total runtime at most $2 \log^3 n$ rounds.

- If true, already equivalent to random gossip!

- Implies $O(D \log^3 n)$ global broadcast.
Proof Sketch

• Define i-tree – a tree structure with 2^i nodes.

• Node v has not terminated at iteration i?
 \rightarrow there are i-trees rooted at v and its uncontacted neighbors and tree of v disjoint from others.

• i-Trees grow exponentially so there could only be max $\log n$ iterations.
\(i \)-tree: Binomial Tree with \(2^i \) nodes

- **0-tree** is a single node which is the root.
- **\(i + 1 \)-tree** is two \(i \)-trees connected by edge, root is one of the two original roots.
Lemma

• At beginning of iteration \(i \), \(0 < i < \log n \).

• \(H_i \) – graph of nodes/edges used thus far.
 • Subgraph used in flooding at iteration \(i \).

• If \(v_0 \) missing rumors from neighbors \(v_1 \ldots v_k \).

• Then there are \(k + 1 \) \(i \)-trees, \(T_0 \ldots T_k \subseteq H_i \), with roots \(v_0 \ldots v_k \), and \(T_0 \) disjoint from others.
Example

Start of iteration 0
Example

Start of iteration 1
Lemma Proof By Induction

- **Base:** $i = 0 \implies$ each node is 0-tree, all disjoint.

![Diagram of nodes v_0, v_1, v_2, v_3, v_4, v_5 with unused edges connecting them.]

Simple, Fast and Deterministic Gossip and Rumor Spreading

Slides by Moshe Gabel
Lemma Proof By Induction

• **Step:** assume v_0 is active in iteration $i + 1$

• u_0 is the neighbor chosen by v_0 in iteration i
Lemma Proof By Induction

• From induction hypothesis: at start of iteration \(i \), \(v_0 \) and \(u_0 \) were roots of two disjoint \(i \)-trees.

• Build \(T_0 \), an \(i+1 \)-tree rooted at \(v_0 \): connect \(i \)-tree of \(v_0 \) with \(i \)-tree of \(u_0 \) using edge \((v_0, u_0)\)
Lemma Proof By Induction

• Need to build $i + 1$-trees for $v_1 \ldots v_k$.

• From symmetry of flooding:

$$v_1 \ldots v_k \notin Rv_0 \iff v_0 \notin Rv_1 \ldots Rv_k$$

• Hence $v_1 \ldots v_k$ are active at iteration $i + 1$.

• Use same construction as T_0 to build $T_1 \ldots T_k$.
Lemma Proof By Induction

• T_0 is disjoint from $T_1 \ldots T_k$ by contradiction.

• Assume T_0 and T_j share node w and $v_j \notin R_{v_0}$
Lemma Proof By Induction

• There is path $p = v_0 \ldots w \ldots v_j$.

• Tree depth $< \log n$ hence $\text{len}(p) \leq 2 \log n$
Lemma Proof By Induction

- There is path of length $\leq 2 \log n$ from v_0 to v_j.

- But rumors are flooded for $d = 2 \log n$.

- Hence $v_j \in R_{v_0}$ (that is, v_0 knows v_j).

- Contradiction $\Rightarrow T_0$ disjoint from T_j
Proof: $\log n$ iterations

- Assume not done after iteration $i = \log n$.

- At least two active nodes, and from Lemma two disjoint trees of depth $\log n$ as subgraphs.

- Each tree with $2^{\log n} = n$ nodes.

- Impossible since total nodes in graph is n.

Proof: Runtime $O(\log^3 n)$ Rounds

- Each iteration adds one link.

- At most $\log n$ iterations $\Rightarrow M = \log n$

- FLOOD with $d = 2 \log n$, $M = \log n$ $\Rightarrow 2 \log^2 n$

- Total:

 $2 \log^2 n \times \log n$ iterations $= 2 \log^3 n$ rounds.
Wait a Second!

- Topology unknown but we need $\log(n)$.
- Start with estimate of n.
- Test completion with neighbor UIDs (known)
- If incomplete \rightarrow square estimate and restart.
- Runtime $\text{polylog}(n) \rightarrow$ constant factor increase
- Sum of geometric series only constant factor of final successful run \rightarrow still $\text{polylog}(n)$
Avoid Guesswork and Repetition

• Estimate-and-square strategy good for any algorithm with polylog time and simple completion check.

• Simpler strategy for deterministic gossip: flood with $d = 2i$ hops and $M = i$
 • At iteration i each node used i edges so $M = i$
 • d is length of longest root-to-root path of two connected i-trees.
Summary

- Broadcast in GOSSIP model.

- **Deterministic**: always succeeds

- **Fast**: $O(\log^3 n)$ for 1-local or $O(D \log^3 n)$

- Can avoid FLOOD and get $O(D \log^2 n)$
 - And even $O(D + \log^{o(1)} n)$ with spanners
Flooding is Slow

• Why do we need flood?

• To make sure that neighbor picked in iteration \(i \) is from disjoint \(i \)-tree.

• To spread rumors symmetrically: all nodes in tree know root rumor and vice versa.

• Can do both with \(i \)-trees structure directly!
How An i-tree is Built

Sub-nodes keep adding nodes, but the i-tree for ν only contains nodes contacted up to time i.
PUSH (Root Rumor Down The Tree)

At end, all children know root.
PULL (Node Rumors up to Root)

• PUSH was in decreasing order of edges: for $j = i$ down to 1: exchange rumors with u_j

• PULL is exactly like push in reverse order: for $j = 1$ to i: exchange rumors with u_j

• After PULL the root knows all rumors known to all children.
Deterministic Tree Gossip 1-Local B-cast

- $R_v \leftarrow \{v\}$
- While not all v’s neighbors are in R_v
 - Arbitrarily pick neighbor u not already in R_v
 - $R' \leftarrow \{v\}, R'' \leftarrow \{v\}$
 - PUSH then PULL with R'
 - PULL then PUSH with R''
 - Add new rumors in R'', R' to R_v
Lemma

• Claim: if u doesn’t know neighbor v at end of iteration i, their i-trees are disjoint.

Proof:

• If node w belongs to two i-trees, it will know rumors of u and v after PUSH step.
• u and v will know all rumors of w after PULL.
• After PUSH-PULL roots know about each other.
Deterministic Tree Gossip Runtime

• From same proof as before, \(\log n\) iterations:

• PUSH-PULL then PULL-PUSH gives symmetry.

• Lemma gives disjoint-ness of \(i\)-trees.

• Need \(4i\) rounds per iteration hence total

\[
\sum_{i=1}^{\log n} 4i = 2 \log n (1 + \log n) = O(\log^2 n)
\]
From 1-local to k-local Broadcast

- k-local becomes global if $k \geq D$

- Simulate any LOCAL algorithm of runtime T:
 - T times \times 1-local broadcast taking $T' = O(T' \cdot T)$
 - $\frac{T}{k}$ times \times k-local broadcast taking $T'' = O \left(T' \cdot \frac{T}{k} \right)$

- Some LOCAL algorithms only need polylog neighborhoods
From 1-local to k-local Broadcast

- Initial iteration is just tree-building, actual 1-local broadcast achieved in the final iteration.

- First 1-local broadcast uses full algorithm.
- Remaining $k-1$ broadcasts repeat final iteration.

- Total: $2(\log n + \log^2 n) + (k - 1)2 \log n = 2(k \log n + \log^2 n)$ rounds.