Distributed Maximal Matching: Greedy is optimal

Gali Sheffi
Edge-colored graphs

• There are k colors
 – Each one has a unique number from $\{1, \ldots, k\}$
• The vertices are anonymous
• The coloring is legal
Deterministic distributed algorithms

- We will only consider:
 - Graphs which are already properly colored
- In each *synchronous* round, every node:
 1. Sends a message to each of its neighbors
 2. Receives a message from each of its neighbors
 3. Updates its own state
Deterministic distributed algorithms

• The formal definition:
 A distributed algorithm is a function A that associates a local output $A(V, \nu)$ with any colored graph V and a node $\nu \in V$.
Algorithms for maximal matchings

• A distributed algorithm A finds a maximal matching in a colored graph V if:
 1. For each $v \in V$ if $A(V, v) = c$ then:
 • There’s an edge $\{u, v\}$ colored with the color c, or
 • $c = \perp$
 2. For every two nodes $v, u \in V$ such that the edge $\{v, u\}$ is colored with the color c:
 • $A(V, v) = c \iff A(V, u) = c$
 • $A(V, u) = \perp \implies A(V, v) \neq \perp$
 • $A(V, v) = \perp \implies A(V, u) \neq \perp$
Greedy Maximal Matching

- There is a greedy algorithm that solves the problem in k steps:
 - Step i:
 - If there’s an adjacent edge colored with color i, and
 - the relevant neighbor haven’t chosen any number yet
 - output “i”
- Each node runs the same algorithm
Greedy Maximal Matching

• The running time of the greedy algorithm is at most $k - 1$ communication rounds
 – The first step doesn’t require any communication
• The running time of the greedy algorithm is at least $k - 1$ communication rounds
Greedy Maximal Matching

• Correctness:
 – M is a matching
 • The graph is properly colored
 – M is maximal
The Lower bound

• We are going to prove the next theorem:
 – A deterministic distributed algorithm that finds a maximal matching in any anonymous, \(k \)-edged-colored graph requires at least \(k - 1 \) communication rounds.

• The case of \(k = 1 \) is trivial
• In the case of \(k = 2 \), there’s a simple counter example
• When \(k \geq 3 \), it’s more complicated
The lower bound – simple cases

• $k = 1$:
 – There is no need in communication rounds at all.

 ![Diagram for $k = 1$](image)

• $k = 2$:
 – Any algorithm requires at least one round

 ![Diagram for $k = 2$](image)
The Lower bound

• In order to find a counter example for $k \geq 3$, we will use a specific type of graphs
• First of all, we will introduce them
The vertices
The vertices

Given a colored graph V and a vertex v, $|v|$ denotes its “distance” from e.
d-regular graphs

- A d-regular graph is:
 - a colored tree
 - Each node has exactly d neighbors
 - $d \leq k$
d-regular graphs

- Given:
 - A d-regular graph, V
 - A non-negative integer h
we define: $V[h] = \{v \in V| h \geq |v|\}$
d-regular graphs

- **Given:**
 - A \(d\)-regular graph \(V\)
 - A node \(v \in V\)

We define \(\nu V\) as the same colored tree, with \(\nu\) as \(e\)
d-regular graphs

- Let A be a deterministic distributed algorithm
- For every d-regular graphs V, U and nodes $v \in V, u \in U$
 - If $vV[r + 1] = uU[r + 1]$, and A stops after at most r communication rounds, then $A(V, v) = A(U, u)$
The lower bound

- **We will now prove that:**
 - Given a set of $k \geq 3$ colors,
 - A deterministic distributed algorithm that finds a maximal matching in any $(k - 1)$-regular graph requires at least $k - 1$ communication rounds.

- **Conclusion:**
 - A deterministic distributed algorithm that finds a maximal matching in any colored graph requires at least $k - 1$ communication rounds.
The lower bound

Theorem:

Let $k \geq 3$ be an integer.

Assume that A is a distributed algorithm that finds a maximal matching in any colored graph.

Then there are two $(k-1)$-regular graphs U and V such that:

1. $U[k - 1] = V[k - 1]$
2. $A(U, e) \neq \bot$ and $A(V, e) = \bot$

Conclusion:

A requires at least $k - 1$ communication rounds
The lower bound

• Assume that A is a distributed algorithm that finds a maximal matching in any colored graph.

• There exist two graphs U', V' such that:

 1. Both U' and V' are $(k - 1)$-regular
 2. $U'[k - 2] = V'[k - 2]
 3. Every node is matched under A
 4. There exists a color y such that:
 • $\bar{y}U'[k - 2] = \bar{y}V'[k - 2]
 • $A(U', e) = y \neq A(V', e)$
The lower bound

• Example:
 – A is the greedy algorithm
 – $k = 3$

1. Both U' and V' are $(k - 1)$-regular
2. $U'[k - 2] = V'[k - 2]$
3. Every node is matched under A
4. There exists a color y such that:
 \[yU'[k - 2] = yV'[k - 2] \]
 \[A(U', e) = y \neq A(V', e) \]
The lower bound

- Constructing U, V:

1. Both U' and V' are $(k - 1)$-regular
2. $U'[k - 2] = V'[k - 2]
3. Every node is matched under A
4. There exists a color y such that:
 $\bar{y}U'[k - 2] = \bar{y}V'[k - 2]$
 $A(U', e) = y \neq A(V', e)$
The lower bound

• Constructing U, V

1. Both U' and V' are $(k - 1)$-regular
2. $U'[k - 2] = V'[k - 2]
3. Every node is matched under A
4. There exists a color y such that:
 \[
 \bar{y}U'[k - 2] = \bar{y}V'[k - 2]
 \]
 \[
 A(U', e) = y \neq A(V', e)
 \]
The lower bound

- Constructing U, V

1. Both U' and V' are $(k - 1)$-regular
2. $U'[k - 2] = V'[k - 2]$
3. Every node is matched under A
4. There exists a color y such that:
 \[\bar{y}U'[k - 2] = \bar{y}V'[k - 2] \]
 \[A(U', e) = y \neq A(V', e) \]
The lower bound

Constructing U, V:

1. Both U' and V' are $(k - 1)$-regular
2. $U'[k - 2] = V'[k - 2]$
3. Every node is matched under A
4. There exists a color y such that:
 \[
 \overline{y}U'[k - 2] = \overline{y}V'[k - 2]
 \]
 \[
 A(U', e) = y \neq A(V', e)
 \]
• Constructing U, V:

1. Both U' and V' are $(k - 1)$-regular
2. $U'[k - 2] = V'[k - 2]$
3. Every node is matched under A
4. There exists a color y such that:
 $$\bar{y}U'[k - 2] = \bar{y}V'[k - 2]$$
 $$A(U', e) = y \neq A(V', e)$$
The lower bound

- Constructing U, V

 1. Both U' and V' are $(k - 1)$-regular
 2. $U'[k - 2] = V'[k - 2]$
 3. Every node is matched under A
 4. There exists a color y such that:
 - $\bar{y}U'[k - 2] = \bar{y}V'[k - 2]$
 - $A(U', e) = y \neq A(V', e)$
The lower bound

• Constructing U, V:

1. Both U' and V' are $(k - 1)$-regular
2. $U'[k - 2] = V'[k - 2]$
3. Every node is matched under A
4. There exists a color y such that:
 \[\bar{y}U'[k - 2] = \bar{y}V'[k - 2] \]
 \[A(U', e) = y \neq A(V', e) \]
The lower bound

• Constructing U, V:

$(k - 1)$-regular graphs

$U[k - 1] = V[k - 1]$

$A(U, e) \neq \perp$

$A(V, e) = \perp$
The lower bound

- Constructing U, V:

$\begin{align*}
(k - 1)$-regular graphs & \\
U[k - 1] = V[k - 1] & \\
A(U, e) \neq \perp & \\
A(V, e) = \perp
\end{align*}$
The lower bound

Theorem:
Let \(k \geq 3 \) be an integer.
Assume that \(A \) is a distributed algorithm that finds a maximal matching in any colored graph.
Then there are two \((k - 1)\)-regular graphs \(U \) and \(V \) such that:

1. \(U[k - 1] = V[k - 1] \)
2. \(A(U, e) \neq \perp \) and \(A(V, e) = \perp \)

Conclusion:
\(A \) requires at least \(k - 1 \) communication rounds.
The lower bound

• **Conclusions:**
 • Given a set of $k \geq 3$ colors, a deterministic distributed algorithm that finds a maximal matching in any $(k - 1)$-regular graph requires at least $k - 1$ communication rounds.
 • Holds also for $k \in \{1,2\}$

• **In the general case:**
 • A deterministic distributed algorithm that finds a maximal matching in any colored graph requires at least $k - 1$ communication rounds.