INTRODUCTION TO DEEP LEARNING

LECTURE 1

Elad Hoffer
Nir Ailon
Ran El-Yaniv

Technion Israel Institute Of Technology,
Computer-Science department
1. Background

2. Training Neural Networks
 2.1 Objective and Loss functions
 2.2 Stochastic-Gradient-Descent
 2.3 Backpropagation
The course will cover various aspects of neural network models that are currently used to solve various machine learning problems.

It is intended as a practical, hands-on guide at using these kind of models.

As such, technical tutorials will be interleaved, employing the Torch scientific-computing framework.

We assume students are familiarized with basic machine learning concepts and models.
Key aspects of the course

Some cautionary points

This field is currently at a point where theory is sometime lacking.

- As such, technicalities and "tricks of the trade" are important and inseparable from any real-world use of these models.
- This also means that proofs and mathematical accuracy are frequently sacrificed in favor of intuition and empirical findings.
Projects

○ Students accepted to perform a project have been notified, we are not able to include any more (sorry)

○ Intermediate assignments will be given as an instruction tool. Doing them will also affect final assessment.

○ Those not doing registered are also encouraged to do the assignments and report their findings.
BACKGROUND
Deep learning (deep structured learning or hierarchical learning) is a set of algorithms in machine learning that attempt to model high-level abstractions in data by using model architectures composed of multiple non-linear transformations.

Deep learning models appear as deep networks, deep Boltzmann-machines, deep belief networks, deep auto-encoders and more.

But usually a deep learning model is simply a: Neural networks with **more than 1 hidden layers**
We will start by examining the most basic building block of a neural network - a *fully-connected* layer. This layer computes and affine function of its input: For $x \in \mathbb{R}^n$, weights $W \in \mathbb{R}^{m \times n}$ and bias vector $b \in \mathbb{R}^m$

$$f(x) = \varphi(Wx + b)$$

Where φ non-linear activation function.

Using the step-function as activation, this is the well-known *Perceptron* (Rosenblatt ’57)
neural networks

We can now stack multiple layers to form a simple network.

- Networks are fed with inputs and trained to output the corresponding targets.
- Hidden layers (or hidden activations/representations), are said to represent the data, by applying non-linear transformations.
Why are non-linearities important?

Common non-linearities used:

- **Sigmodial function** - $Sigmoid(x) = \frac{1}{1+e^{-x}}$
- **Hyperbolic tangent** - $TanH(x) = \frac{1-e^{-x}}{1+e^{x}}$
- **Rectified linear unit** - $ReLU(x) = \max(x, 0)$

We use non-linearities to prevent our network from “collapsing” to a linear model.

Visualizing simple NN
One noteworthy aspect of neural networks is the universal approximation theorem (Hornik, 1991)

- Feed-forward network with a single hidden layer containing a finite number of neurons, can approximate continuous functions on compact subsets of \mathbb{R}^n, (under mild assumptions on the activation function).

However, this theorem does not indicate the number of neurons needed for a given error. It can be shown that, in some cases, that number grows exponentially.
Training Neural Networks
Neural network as a learning model

From the perspective of statistical learning theory, by specifying a neural network architecture (the underlying graph and the activation function) we obtain a hypothesis class, namely, the set of all prediction rules obtained by using the same network architecture while changing the weights of the network.

- Learning the class involves finding a specific set of weights, based on training examples
- We are interested in generalizing such that our predictor will yield good performance on unseen examples
We will focus on problem of the form: given training examples \(\{(x^{(1)}, t^{(1)}), \ldots, (x^{(N)}, t^{(N)})\} \) such that \(x^{(i)} \) are the inputs and \(t^{(i)} \) are the targets, we wish to minimize an objective function between the targets, and the network output \(y = F(x) \).

In order to optimize our model according to the desired objective, we will need to choose an error function.

For example, we can perform regression using a network with a \textit{Mean-square-error (MSE)} - computing for the network outputs \(y^{(i)} \) vs targets \(t^{(i)} \)

\[
E_{MSE}(y, t) = \frac{1}{N} \sum_{i=1}^{N} \| y^{(i)} - t^{(i)} \|^2
\]
A common objective is to *classify* correctly a set of examples, such that t_i is the class label. For each input x, the output of the network $y = F(x)$ indicates a probability measure over the set of classes C, and the classification is taken as

$$c = \arg \max_j y$$

where $y \in \mathbb{R}^{|C|}$, $\sum_{j=1}^{|C|} y_j = 1$, $0 \leq y \leq 1$

In order to create this normalized measure, we use another non-linearity - *SoftMax* function

$$\sigma(x)_i = \frac{e^{x_i}}{\sum_{j=1}^N e^{x_j}}$$

which we can use to do multi-class cross entropy regression.
The error function for cross-entropy regression is

\[E_{\text{cross-entropy}}(y, t) = -\sum_{j \in \mathcal{C}} t_i \log y_i \]

and when considering \(t \) as an indicator, where \(c_t \) is the correct label

\[t = \begin{cases}
1, & \text{if } j = c_t \\
0, & \text{otherwise}
\end{cases} \]

We get the “negative-log-likelihood” criterion

\[E_{\text{nll}}(y, t) = -\sum_{j \in \mathcal{C}} t_j \log y_j = -\log y_{c_t} \]
Training a neural network with a large number of parameters requires a simple optimization technique. Usually, a variant of *Stochastic gradient descent (SGD)* is used, using noisy subset estimation of the gradient. It requires $O(n)$ number of computations and memory use, where n is the number of parameters. The most simple update-rule is:

\[
 w_{t+1} = w_t - \varepsilon \cdot \frac{\partial E}{\partial w_t}
\]

where w is the optimized parameter (weight), E is the error (loss function estimation) and ε is the *Learning-Rate*.
Calculating the gradient

We will start by differentiating a fully-connected layer without the non-linearity. For \(x \in \mathbb{R}^n \), weights \(W \in \mathbb{R}^{m \times n} \) and bias vector \(b \in \mathbb{R}^m \)

\[
f(x) = Wx + b
\]

Knowing the error gradient with regard to the output \(\frac{\partial E}{\partial f} \), we can compute the gradient with regard to input

\[
\frac{\partial E}{\partial x} = \frac{\partial f}{\partial x} \cdot \frac{\partial E}{\partial f} = W^T \frac{\partial E}{\partial f}
\]

and with regard to parameters (weight+bias)

\[
\frac{\partial E}{\partial W} = \frac{\partial E}{\partial f} x^T , \quad \frac{\partial E}{\partial b} = \frac{\partial E}{\partial f}
\]
This can be expanded to arbitrary graph (DAG) using the chain rule for derivatives - a.k.a Backpropagation

- Starting at the output and the gradient of our error function, we can backpropagate our gradients towards previous layers
- Each step is local - requiring the (saved) output of previous layer, and the gradient w.r.t to the next layer
- For each layer we calculate the gradient w.r.t to input, and gradient w.r.t weights
Let \(\varphi(\cdot) \) be a non-constant, bounded and monotonically increasing continuous function. Let \(I_m \) denote the hypercube \([0, 1]^m\). Then, given any function \(f \in C(I_m) \) and \(\varepsilon > 0 \), there exists an integer \(N \) and real constants \(v_i, b_i \in \mathbb{R} \)

\[
F(x) = \sum_{i=1}^{N} v_i \varphi(w_i^T x + b_i)
\]

such that

\[
|F(x) - f(x)| < \varepsilon
\]

for all \(x \in I_m \). This still holds when replacing \(I_m \) with any compact subset of \(\mathbb{R}^m \).