1 Consensus

We consider a shared-memory system, where a process might crash, by not taking any more steps. If it is not crashed, it is non-faulty.

Each process p_i has a local variable x_i which holds its input, and a local variable y_i which will hold its output and is initialized to \perp. An algorithm for consensus has to satisfy:

Agreement In every execution, if y_i and y_j are not null then $y_i = y_j$, for every non-faulty processes p_i, p_j (all the non-faulty processes decide the same value).

Validity In every execution, if there is a value v such that $x_i = v$ for every process p_i, then if $y_j \neq \perp$ for a non-faulty process p_j, then $y_j = v$ (if all the inputs are v then v is the only possible decision value).

These are safety properties. The validity prevents a trivial solution of always deciding upon a predetermined default value. In case of binary consensus (inputs are 0 or 1) this validity condition is equivalent to requiring that the decision value is the input of some process.

A trivial solution to this problem is an algorithm in which no process ever decides. Therefore, we add a liveness condition:

Termination In every admissible execution, for every non-faulty process p_i, y_i eventually gets a value other than null (every non-faulty process eventually decides).
2 Solo-Termination

There is no solution to the above consensus problem, therefore we will consider a relaxed termination requirement:

Solo-termination In every admissible execution, if there is a suffix in which only \(p_i \) takes steps, then \(p_i \) eventually decides.

We show an algorithm for solving consensus with solo-termination. It is based on a wrapper for the **safe-phase** procedure.

The **safe-phase** procedure satisfies the following conditions:

1. Agreement - If an invocation of **safe-phase** returns \(v \neq \perp \), then any other invocation of **safe-phase** returns either \(v \) or \(\perp \).
2. If an invocation of **safe-phase** returns a value \(v \neq \perp \) then \(v \) was an argument to this or a previous invocation of **safe-phase** (perhaps by another process).
3. Conditional Termination - If an invocation of **safe-phase** has a phase \(r \) which is larger than any phase of an invocation that starts before this one ends, then it returns a value \(v \neq \perp \).

Proof of the **safe-phase** properties can be found in the course book, chapter 17.

We show how together with the wrapper they imply the consensus requirements.

1. Agreement - Follows from the **safe-phase** agreement, since any value written to \(y \) must be returned from a **safe-phase** invocation.
2. Validity - Follows from the **safe-phase** validity, since any value written to \(y \) must be returned from a **safe-phase** invocation, therefore sent as an argument for a **safe-phase** invocation, therefore the input of some process.
3. Solo-Termination - If a process runs alone in a suffix of an execution, then this suffix has an invocation of **safe-phase** with phase \(r \) that is larger than any phase of an invocation that starts before this one ends, therefore by the conditional termination of **safe-phase** this invocation returns \(v \neq \perp \) and the process decides.
Algorithm 1 safe-phase procedure for processor p_i.

procedure safe-phase(integer r, value x)

 // Stage 1: choose that value with largest tag
 1: $R_i, phase := r$ // other fields of R_i are written with their current values
 2: $maxPhase := 0$
 3: $chosenVal := x$

 // copy R_j to a local variable
 4: for $j := 0$ to $n - 1$ do
 5: $other := R_j$

 // if other.phase > r then return \perp
 6: if $other.phase > r$ then return \perp

 // if other.val $\neq \perp$ then
 7: if $other.val \neq \perp$ then

 // maxPhase := other.tag
 8: if $other.tag > maxPhase$ then
 9: $maxPhase := other.tag$

 // chosenVal := other.val
 10: $chosenVal := other.val$

 // Stage 2: check that no other processor started a larger phase
 11: $R_i := (r, chosenVal, r)$

 // if $R_j.phase > r$ then return \perp
 12: for $j := 0$ to $n - 1$ do
 13: if $R_j.phase > r$ then return \perp

 // return $chosenVal$
 14: return $chosenVal$

Algorithm 2 wrapper code for p_i.

Initially $r = i$, $x_i = input$

1: while true
2: $ans = safe-phase(r, x_i)$
3: if $ans \neq \perp$ then $y_i = ans$
4: $r = r + n$