Proof of the $\Omega(n)$ lower bound on the number of registers for mutual exclusion:

Theorem 1 Any algorithm using read/write registers (even multi-writer) that satisfies mutual exclusion and no-deadlock must use $\Omega(n)$ registers.

indistinguishability Configurations C, D are indistinguishable to a process p if p has the same local state in both configurations and $\text{mem}(C) = \text{mem}(D)$, denoted $C \lessdot D$. A similar definition is used for a set of processes P.

For every finite schedule σ, we denote by $\sigma(C)$ the configuration reached by $\text{exec}(C, \sigma)$.

Lemma 2 If $C \lessdot P D$ for a set of processes P and α is a P-only schedule, then $\sigma(C) \lessdot P \sigma(D)$.

quiescent configuration A configuration D is quiescent if all the processes are in the remainder.

P-quiescent configuration A configuration C is P-quiescent for a set of processes P if there is a quiescent configuration D such that $C \lessdot P D$.

Covers A process p covers a variable R in configuration C if the next step of p is writing to R. This is a characteristic of the local state of p.

The intuition is that if p covers R in C, then after any finite p-free schedule from C p still covers R.

Lemma 3 Let C be a p_i-quiescent configuration. Then there is a p_i-only schedule σ such that p_i is in the critical section in $\sigma(C)$, and during $\text{exec}(C, \sigma)$ p_i writes to a variable that is not covered in C by any other process.

Proof: Since C is p_i-quiescent there is a quiescent configuration D which is indistinguishable from C to p_i. If p_i runs alone from D then the no-deadlock condition implies that it will eventually enter the critical section. Let σ be that p_i-only finite schedule for which p_i is in the critical section in $\sigma(D)$, then by Lemma 1, p_i is in the critical section also in $\sigma(C)$. Assume that any variable to which p_i writes in $\text{exec}(C, \sigma)$ is covered by another process in C. Let W be the set of variables covered in C not by p_i, and let P be the set of processes that covers them. From C, we let every process in P take one step, so that all variables in W are over-written. We then run all the processes that are not in the remainder until they reach the remainder (by no-deadlock) in a quiescent configuration Q. We then run some p_j other than p_i until it is in the critical section in a configuration E. Running this same schedule from $\sigma(C)$ instead of from C results in p_j being in the critical section as in E, since the first steps have over-written anything that p_i wrote in $\text{exec}(C, \sigma)$. But p_i is also in the critical section, which is a contradiction. \blacksquare
Lemma 4 For every \(k, 1 \leq k \leq n \), and a quiescent configuration \(C \), there is a configuration \(D \) reachable from \(C \) by a \(p_0, \ldots, p_{k-1} \)-only schedule, such that \(p_0, \ldots, p_{k-1} \) cover \(k \) different variables in \(D \), and \(D \) is \(p_k, \ldots, p(n-1) \)-quiescent.

Proof: By induction on \(k \). Induction step: From \(C \) we can reach a configuration \(C_1 \) which is \(p_k, \ldots, p_{n-1} \)-quiescent and in which \(p_0, \ldots, p_{k-1} \) cover a set \(W \) of \(k \) different variables. By Lemma 3 there is a \(p_k \)-only schedule after which \(p_k \) covers a variable \(X \) not in \(W \) for the first time. But this might not be a \(p_{k+1}, \ldots, p_{n-1} \)-quiescent configuration because \(p_k \) might have written to other variables during this execution. We do something similar to the previous proof and let \(p_0, \ldots, p_{k-1} \) overwrite \(W \) and run to the remainder. This configuration \(D'_1 \) is not quiescent since \(p_k \) is in the entry, but if we had run this from \(C_1 \) it would have been a quiescent configuration \(D_1 \), so we could have used the induction hypothesis again to get these processes covering \(W \) again in a configuration \(C_2 \). But only \(p_k \) distinguishes between \(D_1 \) and \(D'_1 \) and hence running this from \(D'_1 \) results in a configuration \(C'_2 \) in which they cover \(W \), and also \(p_k \) covers \(X \) not in \(W \).

We cheated: the lemma does not guarantee that the set \(W \) of covered variables is always the same. So in \(C'_2 \) we might be covering a set \(W' \) which does include \(X \). But since there is only a finite number of variables, there is only a finite number of sets of \(k \) variables. We go from \(C \) to \(C_1 \) to \(D_1 \) to \(C_2 \) to \(D_2 \) and so on, each time covering a set \(W_i \) in \(C_i \). After a finite number of iterations, we get \(W_i = W_j \) and now our previous argument works.

Proof of the Theorem: Apply Lemma 4 to the initial configuration \(C \) with \(k=n \).