Bounded algorithms for mutual exclusion

Mutual exclusion algorithm for 2 processes

Algorithm 12 A bounded mutual exclusion algorithm for two processors: with no lockout.

Initially $Want[0]$ and $Want[1]$ and $Priority$ are all 0

<table>
<thead>
<tr>
<th>Code for p_0</th>
<th>Code for p_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Entry):</td>
<td>(Entry):</td>
</tr>
<tr>
<td>1: $Want[0] := 0$</td>
<td>1: $Want[1] := 0$</td>
</tr>
<tr>
<td>2: wait until $(Want[1] = 0$ or $Priority = 0)$</td>
<td>2: wait until $Want[0] = 0$ or $Priority = 1$</td>
</tr>
<tr>
<td>4: if $(Priority = 1)$ then</td>
<td>4: if $(Priority = 0)$ then</td>
</tr>
<tr>
<td>5: if $(Want[1] = 1)$ then</td>
<td>5: if $(Want[0] = 1)$ then</td>
</tr>
<tr>
<td>\hspace{2em} goto Line 1</td>
<td>\hspace{2em} goto Line 1</td>
</tr>
<tr>
<td>(Critical Section)</td>
<td>(Critical Section)</td>
</tr>
<tr>
<td>(Exit):</td>
<td>(Exit):</td>
</tr>
<tr>
<td>7: $Priority := 1$</td>
<td>7: $Priority := 0$</td>
</tr>
<tr>
<td>8: $Want[0] := 0$</td>
<td>8: $Want[1] := 0$</td>
</tr>
<tr>
<td>(Remainder)</td>
<td>(Remainder)</td>
</tr>
</tbody>
</table>

Lemma 1 In every configuration of every execution, if p_i is in the critical section then $want[i]=1$.

Theorem 2 The algorithm satisfies mutual exclusion.

Proof: Assume by contradiction that both processes are in the critical section in some configuration.

By Lemma 1 $want[0] = want[1] = 1$. In the initial configuration $want[0] = want[1] = 0$, so both processes must have written 1 to their want variable.

Assume that the last such write of p_0 was after the last such write of p_1. p_0 enters the critical section after reading $want[1] = 0$ either in line 5 or in line 6. In both cases, this read happens after writing $want[0] = 1$ which we assumed that happened after writing $want[1] = 1$ for the last time, which is a contradiction.
Theorem 3 The algorithm satisfies no-deadlock.

Proof: Consider an admissible execution and assume that there is a configuration C in which a process, say \(p_0 \), is in the entry, and in all the following configurations no process is in the critical section. Analyze according to 2 possible cases - either both processes are in the entry in the following configurations, or \(p_1 \) is in the remainder. In both cases show that a process enters the critical section.

Theorem 4 The algorithm satisfies no-starvation.

Proof: Consider an admissible execution and assume that a process, say \(p_0 \), is starved, i.e., it is always in the entry, starting from some configuration C. Analyze according to 2 possible cases - either \(p_1 \) executes line 7 in some configuration after \(C \), or \(p_1 \) does not execute line 7 after \(C \). In both cases show that \(p_0 \) enters the critical section.
Tournament tree algorithm for n processes

Algorithm 13 The tournament tree algorithm:

A bounded mutual exclusion algorithm for n processors.

```plaintext
procedure Node(v: integer; side: 0..1)
1:  Want$^v$[side] := 0
2:  wait until (Want$^v[1-side] = 0 or Priority$^v = side$)
3:  Want$^v[side] := 1$
4:  if (Priority$^v = 1 - side$) then
5:      if (Want$^v[1-side] = 1$) then goto Line 1
6:      else wait until (Want$^v[1-side] = 0$)
7:  if (v = 1) then // at the root
8:      (Critical Section)
9:  else Node([v/2], v mod 2)
10:   Priority$^v := 1 - side$
11:   Want$^v[side] := 0$
end procedure
```

Each node has its own variables $want^v[0], want^v[1], priority^v$.

We define a projection of an execution on node v:
given an execution $\alpha = C_0, \phi_1, C_1, \phi_2, C_2, ...$
we define $\alpha_v = D_0, \tau_1, D_1, \tau_2, D_2, ...$ by induction:

Basis: D_0 is the initial configuration of the 2-process algorithm, i.e., $want^v[0] = want^v[1] = priority^v = 0$ and q_0, q_1 are in their initial local states.

Induction step: Assumes α_v is defined up to configuration D_{i-1}, and let ϕ_j be the i-th event in α that occurs in node v, say in Node($v, 0$). Let $\phi_j = k$, i.e., process p_k executes ϕ_j in α. Then τ_i is defined to be 0 and D_i is defined as follows:

* the local state of q_0 is the same as the local state of p_k in C_j.
* the local state of q_1 is the same as its local state in D_{i-1}.
* $want^v[0], want^v[1], priority^v$ are as in C_j.

3
Lemma 5 For each v, α_v is an execution of the algorithm for 2 processes (in every configuration only one process is executing $\text{Node}(v,0)$, and same for $\text{Node}(v,1)$).

Proof: By induction on the height of the node (from the leaves upwards).

Lemma 6 For each v, if α is admissible then α_v is admissible.

Proof: By induction on the depth of the node (from the root downwards).

Theorem 7 The tournament tree satisfies mutual exclusion and no-starvation.

Proof: Mutual exclusion follows from Lemmas 5,6 and since the 2-process algorithm satisfies mutual exclusion (Theorem 2). No-starvation follows from Lemmas 5,6 and since the 2-process algorithm satisfies no-starvation (Theorem 4).