1. Lecture 2: let there be two hypotheses regarding the behavior of a coin:
 - \(H_0 \): upon a toss, the coin falls on “head” with probability \(p \)
 - \(H_1 \): upon a toss, the coin falls on “head” with probability \(q \) (\(q < p \))

 The coin was tossed \(N \) times, and fell on “head” \(h \) of those times.
 a. Write the likelihood ratio \(\Lambda(h) \) of the \(N \)-toss event described above.
 b. Prove that the decision rule comparing the likelihood ratio \(\Lambda(h) \) to a bound \(c \) is equivalent to comparing the number of heads \(h \) to a bound \(c^* \). In other words, there exists a number \(c^* \) such that accepting \(H_0 \) whenever \(h > c^* \) is equivalent to accepting \(H_0 \) whenever \(\Lambda(h) > c \).

 Let \(N = 5 \), \(p = 0.75 \), \(q = 0.33 \). What value of \(c^* \) should be used if:
 c. The false negative probability should be close to but not exceed 0.016?
 d. The false positive probability should be close to but not exceed 0.05?

2. Lecture 3: let \(T \) be a full, directed, binary tree of depth \(k > 1 \). Denote by \(G \) the graph obtained when adding directed edges from all the leaves of \(T \) to its root.
 a. Prove that nodes of equal distance from the root have equal PageRank in \(G \) (although \(G \) is not a tree, we still refer to the root of \(T \) as “the root”).
 b. Denote by \(p_j \) the PageRank (in \(G \)) of nodes at distance \(j \) from the root. With this notation, \(p_0 \) denotes the root’s PageRank. Write an expression for \(p_j - p_{j+1} \) as a function of \(p_0 \), \(N \) (the total number of nodes), and \(d \) (PageRank’s probability of following an outlink).

3. Lecture 3: let \(H = (V,E) \) be a directed Web graph, and let there be two disjoint page sets \(G \) (for “good”) and \(B \) (for “bad”) such that \(V = G \cup B \). The pages in \(B \) might be pages of spammers, and we would like to take advantage of knowing their identities in order to better rank the good pages of the set \(G \).

 Let \(W \) denote the (binary) adjacency matrix of \(H \), and let \(M \) denote the adjacency matrix of \(H \) where the entry corresponding to any link between pages of \(G \) and \(B \) (in either direction) is -1 instead of 1. Note that there is no change to the entries corresponding to links within \(G \) or within \(B \) – they remain 1.

 Prove that computing HITS authority scores using the matrix \(M \) will result in all \(G \)-pages receiving the same authority scores as when computing HITS authority scores using \(W \). In other words, this method is of no help since it does not affect the scores of good pages with bad neighbors. Hint: prove a transformation between the principal eigenvectors of \(M^TM \) and \(W^TW \).
4. Lecture 4: let \(G=(V,E) \) be a weighted directed irreducible graph. For node \(v \in V \), \(\text{let} \quad d_{\text{in}}(v) \quad \text{denote the weighted in-degree of} \ v \quad \text{in} \ G \). Let \(W \) denote the sum of all link weights in \(G \), and let \(N=|V| \).

For some \(\beta \in (0,1) \), let us change the definition of SALSA’s random walk on the authority chain of \(G \) as follows: upon leaving node \(x \), SALSA will perform - with probability \(\beta \) - a normal co-citation step, and with probability \(1-\beta \) will jump to some node \(v \in V \), chosen at random proportionally to \(d_{\text{in}}(v) \). Write (and prove) a closed form expression for node \(x \)'s resulting authority score, using \(\beta, d_{\text{in}}(x) \) and \(W \).

Note: by “co-citation step” we refer to the normal SALSA step of retreating from \(x \) to a node \(k \) that links to \(x \) (i.e. backing up on an inlink of \(x \)), and then leaving \(k \) through an outlink.