Homework 1

Submission: June 13 in class

1. Basic Properties of Submodular Functions:
 Let \(f, g : 2^\mathcal{N} \to \mathbb{R}_+ \) be submodular functions over ground set \(\mathcal{N} \). Prove the following basic properties of submodular functions:

 (a) If \(h(S) \triangleq f(S) + g(S) \) for every \(S \subseteq \mathcal{N} \), then \(h \) is submodular.

 (b) For every fixed \(T \subseteq \mathcal{N} \), if \(h(S) \triangleq f(S \cap T) \) for every \(S \subseteq \mathcal{N} \) then \(h \) is submodular.

 (c) If \(h(S) \triangleq f(\mathcal{N} \setminus S) \) for every \(S \subseteq \mathcal{N} \), then \(h \) is submodular.

 (d) If \(f \) is monotone, then for every \(c \geq 0 \) the function defined by \(h(S) \triangleq \min\{c, f(S)\} \) for every \(S \subseteq \mathcal{N} \) is monotone and submodular.

2. Faster Greedy by Sampling
 Let \(f : 2^\mathcal{N} \to \mathbb{R}_+ \) be a monotone submodular functions over ground set \(\mathcal{N} \), and let \(k \in \mathbb{N} \) be a cardinality bound. We are interested in the following problem: \(\max \{ f(S) : S \subseteq \mathcal{N}, |S| \leq k \} \). Consider the following sampling based algorithm for the above problem parameterized by \(\varepsilon \):

 - \(S_0 \leftarrow \emptyset \).
 - For \(i = 1 \) to \(k \) do:
 - Let \(M_i \subseteq \mathcal{N} \) be a uniformly random subset of size \(\left\lceil \frac{n \ln(1/\varepsilon)}{k} \right\rceil \).
 - Let \(u_i \in M_i \) be the element maximizing the marginal value \(f(S_{i-1} \cup \{u_i\}) - f(S_{i-1}) \).
 - \(S_i \leftarrow S_{i-1} \).
 - Return \(S_k \).

 (a) Show that the running time of the algorithm is \(O(n \ln(1/\varepsilon)) \).

 (b) Let \(S^* \) be some optimal solution to the problem. The goal is to prove that for every iteration \(i = 1, \ldots, k \):
 \[
 \mathbb{E}[f(S_i) - f(S_{i-1})] \geq \frac{1 - \varepsilon}{k} (f(S^*) - \mathbb{E}[f(S_{i-1})]) \quad (*)
 \]

 Fix \(i \) and let \(v_1, \ldots, v_k \) be the \(k \) elements sorted according to the marginal values:
 \[
 f(S_{i-1} \cup \{v_1\}) - f(S_{i-1}) \geq \ldots \geq f(S_{i-1} \cup \{v_k\}) - f(S_{i-1}) .
 \]

 Let \(X_j \) be the indicator for the event that \(M_i \cap \{v_1, \ldots, v_j\} \neq \emptyset \).
 i. Prove that:
 \[
 f(S_{i-1} \cup \{u_i\}) - f(S_{i-1}) = \sum_{j=1}^{k-1} X_j \left((f(S_{i-1} \cup \{v_j\}) - f(S_{i-1})) - (f(S_{i-1} \cup \{v_{j+1}\}) - f(S_{i-1})) \right) + X_k (f(S_{i-1} \cup \{v_k\}) - f(S_{i-1}))
 \]
ii. Prove that: $E[X_j] \geq 1 - \left(1 - \frac{\ln(1/\varepsilon)}{k}\right)^j$ for every $1 \leq j \leq k$.

iii. Prove (\ast).\(^1\)

(c) Assuming $\varepsilon \leq 1 - 1/e$ solve (\ast) and prove that $E[f(S_k)] \geq (1 - 1/e - \varepsilon) f(S^*)$.

\(^1\)Hint: use Chebyshev's sum inequality, for $a_1 \geq \ldots \geq a_n$ and $b_1 \geq \ldots \geq b_n$ the following holds:

$$\frac{1}{n} \sum_{\ell=1}^{n} a_\ell b_\ell \geq \left(\frac{1}{n} \sum_{\ell=1}^{n} a_\ell \right) \left(\frac{1}{n} \sum_{\ell=1}^{n} b_\ell \right)$$