Assignment 3: Algorithms and Complexity

Due June 9th, 2015

Part 1: Incomplete Databases

Question 1

Background. A coloring of a graph is an assignment of colors to the vertices, such that no adjacent nodes are assigned the same color. A graph is k-colorable if we can color it using a collection of (at most) k colors. It is known that determining whether a given graph is k-colorable is NP-complete for every k > 2.

Assignment. Consider the schema S that has a single relation schema Follows(person1, person2) and no constraints. Using a reduction from 3-colorability, show that the following tasks cannot be performed in polynomial time, unless P = NP.

1. Given a v-instance I and an ordinary instance J, both over S, determine whether J \in [I].
2. Compute the core of I.

Part 2: Consistent Query Answering

Question 2 (Cardinality Repairs)

Background. An independent set of an (undirected) graph is a set of nodes that does not contain any edge. The following is a well known NP-complete problem, called the independent-set problem: given a graph G and a number m, does G have an independent set of size m (or larger)?

Assignment. Build a schema S = (R, \Sigma) with all of the following properties:

- R contains two relations.
- \Sigma consists of a single denial constraint.
- Repair checking is coNP-complete over S.

Question 3 (p-Repairs)

Background. Recall that x-repair checking (where x \in \{p, g\}) over a schema S is the following problem: Given an inconsistent prioritizing instance (I, >) over S and an instance J over S, determine whether J is an x-repair of (I, >).

Assignment. Let S be the schema that consists of the single relation schema R(A, B, C) and the following FDs:
• $A \rightarrow B$
• $\emptyset \rightarrow C$ (i.e., C should have the same value for all tuples)

In this question the task it to write a SQL query (with [NOT] EXISTS) to solve p-repair checking over S. Specifically, assume the following extended schema:

• The above $R(A, B, C)$.
• $P(A, B, C, A', B', C')$ for storing a priority relation over $R(A, B, C)$. For example, the relationship $R(0,0,0) \succ R(1,1,1)$ is represented by $P(0,0,0,1,1,1)$.
• $R_J(A, B, C)$ for storing a candidate p-repair J.

Write a SQL query Q over $\{R, P, R_J\}$ that returns a nonempty result (e.g., a single line 'true') if and only if J is a p-repair of (I, \succ).

Question 4 (g-Repairs)

Prove that g-repair checking is coNP-complete over the schema S of the previous question. (Hint: there is a simple reduction from CNF satisfiability.)

Part 3: Probabilistic Databases

Question 5 (CQ Inference)

Background. Let D be a probabilistic database, and let Q be a Boolean query over the signature of D. The probability of Q in D is the probability that a random possible world I in D satisfies $Q(I) = \text{true}$.

Assignment. Show a polynomial-time algorithm to compute the probability of the following Boolean CQ in a tuple-independent database.

$$Q() :\neg R(x), S(x, y)$$

Question 6 (Hardness of CQ Inference)

Background. The following counting problem is known to be #P-complete [PB83].

Given a bipartite graph $(U \cup V, E)$, compute the number of subsets W of $U \cup V$ such that W contains at least one edge (i.e., E contains a pair $\{u, v\}$ such that both u and v are in W).

Assignment. Prove that we could solve this problem in polynomial time if we could compute, in polynomial time, the probability of the following Boolean CQ is true in a tuple-independent database.

$$Q() :\neg R(x), S(x, y), T(y)$$

1 Recall that \cup represents a disjoint union.
References

Good luck!