Efficient Balanced Codes

DONALD E. KNUTH, HONORARY MEMBER, IEEE

Abstract—Coding schemes in which each codeword contains equally many zeros and ones are constructed in such a way that they can be efficiently encoded and decoded.

A BINARY word of length \(m \) can be called balanced if it contains exactly \(\lfloor m/2 \rfloor \) ones and \(\lfloor m/2 \rfloor \) zeros. Let us say that a balanced code with \(n \) information bits and \(p \) parity bits is a set of \(2^n \) balanced binary words, each of length \(n + p \).

Balanced codes have the property that no codeword is "contained" in another; that is, the positions of the ones in one codeword will never be a subset of the positions of the ones in a different codeword. This property makes balanced codes attractive for certain applications, such as the encoding of unchangeable data on a laser disk [2]. Conversely, if we wish to form as many binary words of length \(m \) as possible with the property that no word is contained in another, Sperner's lemma [3] tells us that we can do no better than to construct the set of all balanced words of length \(m \).

A balanced code is efficient if there is a very simple way to encode and decode \(n \)-bit numbers. In other words, we want to find a one-to-one correspondence between the set of all \(n \)-bit binary words and the set of all \((n + p) \)-bit codewords such that, if \(w \) corresponds to \(w' \), we can rapidly compute \(w' \) from \(w \) and vice versa. Furthermore, we want \(p \) to be very small compared with \(n \), so that the code is efficient in its use of space as well as time. For example, it is trivial to construct a balanced code with \(n \) information bits and \(n \) parity bits by simply letting the binary word \(w \) correspond to the codeword \(w = w \), where \(w \) is the complement of \(w \). Encoding and decoding is clearly efficient in this case, but memory space is being wasted.

Let \(M(m) = \left(\begin{array}{c} m \\ \lfloor m/2 \rfloor \end{array} \right) \) be the total number of balanced binary words of length \(m \). To have a balanced code with \(n \) information bits and \(n \) parity bits by simply letting the binary word \(w \) correspond to the codeword \(w' = w \), where \(w \) is the complement of \(w \). Encoding and decoding is clearly efficient in this case, but memory space is being wasted.

Let \(M(m) = \left(\begin{array}{c} m \\ \lfloor m/2 \rfloor \end{array} \right) \) be the total number of balanced binary words of length \(m \). To have a balanced code with \(n \) information bits, we clearly need to have enough parity bits \(p \) so that \(M(n + p) \geq 2^n \). Stirling's approximation tells us that

\[
\log M(m) = m - \frac{1}{2} \log m - \frac{1}{2} \log \pi - \frac{\epsilon(m)}{m},
\]

where \(0 \leq \epsilon(m) \leq 1.25/\ln 2 \approx 0.61; \) all logarithms here have radix 2, and the constant \(1/2 \log \pi/2 \) is approximately 0.326. Therefore, in particular, we must have \(p > 1/2 \log n + 0.326 \) in any balanced code.

The purpose of this correspondence is to describe a balanced code with \(2^n \) information bits and \(p \) parity bits, for which serial encoding and decoding is especially simple. This means, for example, that 256-b words can be encoded efficiently with only eight parity bits, obtaining 264-b balanced words; thus the percentage of memory devoted to overhead in order to satisfy the balance constraint is only \(8/264 = 3.03 \) percent.

A similar scheme that allows efficient parallel decoding and efficient serial encoding is also described. The parallel method for \(n \) information bits takes roughly \(\log n + 1/2 \log \log n \) parity bits in its simplest form, and the \(1/2 \log \log n \) term can be replaced by 1 at the expense of additional complexity. For example, a balanced code with 256 information bits and nine parity bits will be constructed explicitly. This code has the property that the 256-b word \(w \) corresponds to a balanced 265-b codeword \(w' = uw^{(k)} \), where \(w^{(k)} \) denotes \(w \) with its first \(k \) bits complemented and where the 9-b prefix \(u \) determines \(k \). It is clearly possible to determine \(w \) quickly from \(w' \) in such a code.

A SIMPLE PARALLEL SCHEME

Let \(\nu(w) \) be the total number of ones in the binary word \(w \), let \(\nu_k(w) \) be the number of ones in the first \(k \) bits of \(w \), and let \(\nu(w^{(k)}) \) be the word \(w \) with its first \(k \) bits complemented. For example, if \(w = 0111010110 \), we have \(\nu(w) = 6, \nu_2(w) = 3, \) and \(\nu(w^{(k)}) = 100010110 \). Since \(k - \nu_k(w) \) of the first \(k \) bits of \(w \) are zeros, we have

\[
\nu(w^{(k)}) = \nu(w) + k - 2\nu_k(w).
\]

This relation is the key to all the coding schemes that will be described in the following.

If \(w \) has length \(n \) and if we let \(\sigma_k(w) \) stand for \(\nu(w^{(k)}) \), the quantity \(\sigma_k(w) \) changes by \(\pm 1 \) when \(k \) increases by one, so it describes a "random walk" from \(\sigma_0(w) = \nu(w) \) to \(\sigma_n(w) = n - \nu(w) \).

Now comes the point: the value \(\lfloor n/2 \rfloor \) lies in the closed interval between \(\nu \) and \(n - \nu \) for all integers \(\nu \); hence a \(k \) always exists such that \(\sigma_k(w) = \lfloor n/2 \rfloor \). In other words, every word \(w \) can be associated with at least one \(k \) such that \(w^{(k)} \) is balanced. If we encode \(k \) in a balanced word \(u \) of length \(p \), and if \(n \) and \(p \) are not both odd, we can let \(w \) correspond to the balanced codeword \(uw^{(k)} \). If \(n \) and \(p \) are both odd, we can use a similar construction, but the
value of \(k \) should be chosen so that \(\sigma_k(w) = \lceil n/2 \rceil \); then again \(uw^{(k)} \) will be balanced.

For example, suppose that we want a balanced code of this sort having eight information bits. Every 8-b word \(w \) defines at least one value of \(k \) such that \(w^{(k)} \) is balanced; we never need to use \(k = 8 \), so we can assume that \(0 \leq k < 8 \). If we arbitrarily choose eight balanced words \((u_0, \ldots, u_7) \) of length five, we can represent \(w \) by the balanced word \(u_k w^{(k)} \). (Such a choice of \(u \)'s is possible since \(M(5) = 10 \times 8 \).) This gives us a code with eight information bits and five parity bits. Parallel decoding is easy, because \(k \) is determined from \(u \) by table-lookup; then \(w \) is \(w^{(k)} u_k \). Serial encoding is also easy, because we can determine \(k \) by computing \(\sigma_k(w) \) for \(k = 0, 1, \ldots \) until finding \(\sigma_k(w) = 4 \).

A similar scheme gives a balanced code with 256 information bits and 11 parity bits, because \(M(11) > 256 \). In general, this approach works with \(n \) information bits and \(p \) parity bits whenever \(M(p) \geq 2^{n/2} \).

A Simple Serial Scheme

We can decrease the number of parity bits in the previous construction by using all the bits of \(u \). The idea is to encode \(w \) as \(uw^{(k)} \) for some \(u \) and \(k \), as before, but \(u \) does not have to be balanced; any imbalance in \(u \) will be compensated by a corresponding imbalance in \(w^{(k)} \). For example, when \(n = 4 \) and \(p = 2 \) we can simply let \(k = 0 \) when \(0 < v(w) < 4 \); if \(v(w) = 1, 2, 3 \) we can let \(u = 11, 01, 00 \), respectively. The remaining two cases \(w = 0000 \) and \(w = 1111 \) are handled by letting \(k = 2 \) and \(u = 10 \).

When \(n = 8 \) and \(p = 3 \), an exhaustive analysis shows that no similar scheme exists in which \(k \) is determined by \(u \); however, we can construct a code in which \(u \) is determined by \(v(w) \) as follows:

\[
\begin{array}{cccccc}
0 & 001 & 4 & 3 & 101 & 3 \vspace{1pt} \\
1 & 011 & 3 & 4 & 100 & 4 \vspace{1pt} \\
2 & 010 & 4 & 5 & 000 & 5 \vspace{1pt} \\
\end{array}
\]

The word \(uw^{(k)} \) will be balanced in this case if and only if \(v(uw^{(k)}) = v(u) + \sigma_k(w) = \lceil n/2 \rceil \); this happens if and only if \(\sigma_k(w) = s \), where the values of \(s \) have been tabulated. Since \(\sigma_k(w) \) runs from \(v(n) \) to \(n - v(n) \), it is easy to verify in each case that some value of \(k \) will make \(\sigma_k(w) = s \). The code is defined by choosing the smallest \(k \) such that \(\sigma_k(w) = v(w) \).

One complication exists, however: two different values of \(v(w) \) correspond to the same value of \(u \), namely, \(u = 001 \) has both \(v(w) = 0 \) and \(v(w) = 8 \). This is not really a difficulty, because it arises only for the two words \(w = 00000000 \) and \(11111111 \) (when we know that \(k = 4 \)); but it is an annoying anomaly. The best way to avoid it is to consider only the values of \(\sigma_k(v) \) modulo 8 when decoding. We know \(v(w) \) mod 8, so we choose the smallest \(k \) such that \(\sigma_k(v) = v(w) \) (modulo 8).

Incidentally, there is no balanced code with \(n = 8 \) and \(p = 2 \), since \(M(10) = 252 \) is less than 256. Therefore, the balanced code just defined is optimum for \(n = 8 \).

A similar balanced code can be constructed with \(p \) parity bits and \(n = 2^p \) information bits, for all \(p \geq 3 \), as follows. For \(0 \leq l < n \), let \(u_l \) be a \(p \)-bit word such that the number

\[
s_l = n/2 + \lceil p/2 \rceil \cdot r(u_l)
\]

lies between \(l \) and \(n - l \), inclusive. This should be a permutation of the \(p \)-bit words; that is, \(l \neq l' \) should imply that \(u_l \neq u_{l'} \). An \(n \)-bit word \(w \) is then encoded as \(u_w w^{(k)} \), where \(l = v(w) \) mod \(n \) and where \(k \) is minimal such that \(\sigma_k(w) \equiv s_l \) (modulo \(n \)). An \((n + p) \)-bit word \(w' = uw \) is decoded as \(v^{(k)} \), where \(k \) is minimal such that \(\sigma_k(v) = l \) (modulo \(n \)) and where \(l \) is determined by the condition \(u = u_l \).

It remains to specify the correspondence between \(l \) and \(u_l \). Since \(p \) is much smaller than \(n \), the choice is delicate only when \(l \) is near \(n/2 \). It is not difficult to find a mapping that assigns the balanced words to values of \(l \) near \(n/2 \); the rest of the codes are essentially arbitrary.

For example, let \(p = 8 \) and \(n = 256 \). We want to permute the 8-b words \(u_{128+l} \) for \(128 \leq l < 128 \) in such a way that \(0 \leq l + v(u_{128+l}) - 4 \leq 2^l \) when \(l \geq 0 \) and \(0 \leq l + v(u_{128+l}) - 4 \leq 2^l \) when \(l < 0 \). The inequalities are always valid when \(|l| \geq 4 \), so the choice of \(u_l \) is important only when \(124 < l < 132 \). A suitable mapping is obtained by letting \(u_l = a_l b_l \), where \(a_l \) and \(b_l \) are the 4-b binary representations of \((l + 8) \mod 16 \) and \(b_l \) is the 4-b binary representation of \((l + 8) \mod 16 \).

\[
\l = (120 + a + 16((b - a) \mod 16)) \mod 256
\]

An Optimized Parallel Scheme

We have now constructed two balanced codes with \(n = 256 \); one has \(p = 11 \) parity bits to allow parallel decoding, and the other has \(p = 8 \) parity bits to allow serial decoding. The author has been unable to construct a parallel decoder for such schemes when \(n = 256 \) and \(p = 8 \), but the following method gives parallel decoding when \(p = 9 \) and in general whenever \(n = 2^p - 1 \).

The idea is to choose \(l \) words \((u_l, \ldots, u_{l+p-1}) \) of \(p \) bits each and to choose \(l \) values \((k_1, \ldots, k_l) \) in the range \(0 \leq k_j \leq n \).
such that every random walk

\((0, \sigma_0(w)), (1, \sigma_1(w)), \ldots, (n, \sigma_n(w))\) \((\ast)\)

is guaranteed to pass through one of the points

\[P_j = (k_j, \lfloor (n + p)/2 \rfloor - v(u_j)) \]

for some \(j\). We can then encode \(w\) as the balanced word \(u_w(w)\). Parallel decoding is possible since the \(p\)-bit parity word \(u\) determines the extent of complementation.

We shall choose the \(u\)'s and \(k\)'s in such a way that \(v(u_{j+1}) - v(u_j) = 0\) or \(1\) and \(k_{j+1} - k_j = 1 - (v(u_{j+1}) - v(u_j))\). This means that \(P_{j+1} - P_j\) is always either \((1, 0)\) or \((0, -1)\). For example, when \(p = 3\) and \(n = 4\), we can let the pairs \((k_j, u_j)\) be

\[
(0,001) \quad (1,010) \quad (2,100) \quad (2,011) \quad (3,101) \quad (4,110)
\]

so that the points \(P_j\) are

\[
(0,2) \quad (1,2) \quad (2,2) \quad (2,1) \quad (3,1) \quad (4,11).
\]

We shall also choose \(k_1 = 0\) and \(k_n = n\), so that any random walk \((\ast)\) must lie entirely "above" or "below" the set of \(P\)'s.

Let \(P_0 = (0, M)\) and \(P_1 = (n, m)\) be the extreme points. If \((\ast)\) does not intersect the set \(\{P_1, \ldots, P_1\}\), we must have either \(\sigma_0(w) > M\) and \(\sigma_n(w) > m\) or \(\sigma_0(w) < M\) and \(\sigma_n(w) < m\). Since \(\sigma_0(w) + \sigma_n(w) = n\), this cannot happen unless \(n > M + m + 2\) or \(n \leq M + m - 2\). Therefore, it suffices to design the construction so that \(|M + m - n| \leq 1\).

A moment's thought now makes it clear what to do: we list all \(p\)-bit numbers \(u\) in any order such that the weights \(v(u)\) are nondecreasing, then we choose \(l - n + h + 1\) of these near the "middle" of the sequence such that \(v(u_i) = h\) for some \(h\). For example, the case \(p = 3\) worked out earlier has \(h = 1\) and \(l = 6\). When \(p = 9\) there are 126 \(u\)'s of weight four and 126 of weight five; we can take \(h = 3\), \(l = 260\), starting with any four words \((u_1, \ldots, u_4)\) of weight three, then \((u_2, \ldots, u_{130})\) of weight four, then \((u_{131}, \ldots, u_{256})\) of weight five, and \((u_{257}, \ldots, u_{300})\) of weight six. In this case \(n = 256\), \(M = \lfloor 265/2 \rfloor - 3 = 129\), \(m = \lfloor 256/2 \rfloor - 6 - 126\); hence \(M + m - n - 1\) and we have achieved our objective. It is not difficult to verify that the method works for all \(p \geq 3\): when \(p\) is odd, \(h\) will be odd, and we will have \(M = (n + h - 1)/2\), \(m = (n - h - 1)/2\), but when \(p\) is even, \(h\) will be even and we will have \(M = (n + h)/2\), \(m = (n - h)/2\).

The method just described does not depend in any essential way on the assumption that \(n\) is a power of two. We can use it, in fact, to transmit as many as \(2^p - p - 1\) information bits if we let \(l = 2^p\).

ACKNOWLEDGMENT

The author wishes to thank an anonymous referee for several penetrating observations that substantially improved this correspondence.

REFERENCES