Network Coding and Related Combinatorial Structures

Tuvi Etzion

Lecture 9

Constructions of Subspace Codes
Constructions of Subspace Codes

Outline

- Ferrers diagrams rank-metric codes
- Multilevel construction
- Punctured codes
- Cyclic codes
- Linearized and subspace polynomials
Subspace Codes

\((n, M, d)\) code is a set of \(M\) subspaces of \(P_q(n)\) with minimum subspace (injection) distance \(d\).

\((n, M, 2\delta, k)_q\) code is a set of \(M\) subspaces of \(G_q(n, k)\) with minimum subspace distance \(2\delta\).

\(A_q(n, d)\) is the maximum number of codewords in an \((n, M, d)\) code in \(P_q(n)\).

\(A_q(n, d, k)\) is the maximum number of codewords in an \((n, M, 2\delta, k)_q\) code.
A $[k \times m, \varrho, \delta]_q$ code satisfies
$$\varrho \leq \min\{k(m - \delta + 1), m(k - \delta + 1)\}$$

There exists a $[k \times m, \varrho, \delta]_q$ code which satisfies
$$\varrho = \min\{k(m - \delta + 1), m(k - \delta + 1)\}$$

If A is an $k \times m$ matrix then $[I A]$ is a generator matrix of a k-dimensional subspace of \mathbb{F}^{m+k}_q.

If C is a $[k \times m, \varrho, \delta]_q$ code then $C = \{[[I X]] : X \in C\}$ is a code in $G_q(m + k, k)$ with $d_S(C) = 2\delta$.

Theorem

Theorem

Lemma
Lifted Rank-Metric Codes

Lemma

If A is an $k \times m$ matrix then $[IA]$ is a generator matrix of a k-dimensional subspace of \mathbb{F}_{q}^{m+k}.

The subspace $\langle [IA] \rangle$ is called the lifting of A.

Theorem

If C is a $[k \times m, q, \delta]_q$ code then $\mathcal{C} = \{ \langle [I X] \rangle : X \in C \}$ is a code in $G_q(m+k, k)$ with $d_S(\mathcal{C}) = 2\delta$.

The code $\mathcal{C} = \{ \langle [I X] \rangle : X \in C \}$ is the lifting of C.
A $k \times n$ matrix with rank k is in reduced row echelon form if the following conditions are satisfied.

- The leading coefficient of a row is always to the right of the leading coefficient of the previous row.
- All leading coefficients are ones.
- Every leading coefficient is the only nonzero entry in its column.

A k-dimensional subspace X of \mathbb{F}_q^n can be represented by a $k \times n$ generator matrix whose rows form a basis for X. The row echelon form of X will be denoted by $E(X)$.
A \(k \times n \) matrix with rank \(k \) is in reduced row echelon form if the following conditions are satisfied.

- The leading coefficient of a row is always to the right of the leading coefficient of the previous row.
- All leading coefficients are ones.
- Every leading coefficient is the only nonzero entry in its column.

\[
E(X) = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
A Ferrers diagram represents partitions as patterns of dots with the ith row having the same number of dots as the ith term in the partition. A Ferrers diagram satisfies the following conditions.

- The number of dots in a row is at most the number of dots in the previous row.
- All the dots are shifted to the right of the diagram.

$(21) = 5 + 5 + 4 + 3 + 3 + 1$
Identifying Vectors

Each k-dimensional subspace X of \mathbb{F}^n_q has an identifying vector $v(X)$ which is a binary vector of length n and weight k, where the ones in $v(X)$ are in the positions (columns) where $E(X)$ has the leading ones (of the rows).

$$E(X) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$v(X) = 1011000$$
Identifying Vectors

Each \(k \)-dimensional subspace \(X \) of \(\mathbb{F}_q^n \) has an identifying vector \(v(X) \) which is a binary vector of length \(n \) and weight \(k \), where the \textit{ones} in \(v(X) \) are in the positions (columns) where \(E(X) \) has the leading \textit{ones} (of the rows).

Lemma 1 Let \(X \) be a \(k \)-dimensional subspace of \(\mathbb{F}_q^n \), and \(i_1, i_2, \ldots, i_k \) the positions in which \(v(X) \) has \textit{ones}. Then, for each vector \(u \in X \), the leftmost \textit{one} in \(u \) is in position \(i_j \) for some \(1 \leq j \leq k \).

Proof Clearly, there are at least \(k \) vectors with different position for the leftmost \textit{one}. If there are more than \(k \) vectors with different position for the leftmost \textit{one} then the dimension of the subspace will be greater than \(k \).
Identifying Vectors

Lemma 1 Let X be a k-dimensional subspace of \mathbb{F}_q^n, and i_1, i_2, \ldots, i_k the positions in which $v(X)$ has ones. Then, for each vector $u \in X$, the leftmost one in u is in position i_j for some $1 \leq j \leq k$.

Lemma If $X, Y \in P_q(n)$ then $d_S(X, Y) \geq d_H(v(X), v(Y))$.

Proof Clearly, $v(X)$ has r positions with ones where $v(Y)$ has zeros, and $v(Y)$ has t positions with ones where $v(X)$ has zeros. Hence, $r + t = d_H(v(X), v(Y))$. By Lemma 1, there are r linearly independent vectors in X which are not contained in Y, and t linearly independent vectors in Y which are not contained in X.

Thus, $d_S(X, Y) \geq r + t = d_H(v(X), v(Y))$.
The echelon Ferrers form of a vector \(u \) of length \(n \) and weight \(k \), \(EF(u) \), is a \(k \times n \) matrix in reduced row echelon form with leading entries (of rows) in the columns indexed by the nonzero entries of \(u \) and \(\cdot \) in all entries which do not have terminals zeros or ones. A \(\cdot \) is called a dot. The dots in this matrix form the Ferrers diagram of \(EF(u) \).

If we substitute the elements of \(\mathbb{F}_q \) in the dots of \(EF(u) \) we obtain a \(k \)-dimensional subspace \(X \) of \(P_q(n) \). \(EF(u) \) will be also called the echelon Ferrers form of \(X \).
The echelon Ferrers form of a vector u of length n and weight k, $EF(u)$, is a $k \times n$ matrix in reduced row echelon form with leading entries (of rows) in the columns indexed by the nonzero entries of u and \bullet in all entries which do not have terminals zeros or ones. A \bullet is called a dot. The dots in this matrix form the Ferrers diagram of $EF(u)$.

$$E(X) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$v(X) = 1011000$$

$$EF(v(X)) = \begin{bmatrix} 1 & \bullet & 0 & 0 & \bullet & \bullet & \bullet \\ 0 & 0 & 1 & 0 & \bullet & \bullet & \bullet \\ 0 & 0 & 0 & 1 & \bullet & \bullet & \bullet \end{bmatrix}$$
Let u be a vector of length n and weight k. Let F be the Ferrers diagram of $EF(u)$. F is an $m \times \eta$ Ferrers diagram, $m \leq k$, $\eta \leq n - k$. A code C is an $[F, \varrho, \delta]_q$ Ferrers diagram rank-metric code if all its codewords are $m \times \eta$ matrices in which all entries not in F are zeros, it forms a rank-metric code with dimension ϱ and minimum rank distance δ.

Let $\text{dim } (F, \delta)_q$ be the largest possible dimension of an $[F, \varrho, \delta]_q$ code.
For a given i, $0 \leq i \leq \delta - 1$, if v_i is the number of dots in a Ferrers diagram \mathcal{F}, which are not contained in the first i rows and are not contained in the rightmost $\delta - 1 - i$ columns, then $\min_i\{v_i\}$ is an upper bound on $\dim (\mathcal{F}, \delta)_q$.

Proof

For a given i, $0 \leq i \leq \delta - 1$, let A_i be the set of the v_i positions of \mathcal{F} which are not contained in the first i rows and are not contained in the rightmost $\delta - 1 - i$ columns. Assume the contrary, that there exists an $[\mathcal{F}, v_i + 1, \delta]_q$ code C.
Proof

For a given i, $0 \leq i \leq \delta - 1$, let A_i be the set of the ν_i positions of F which are not contained in the first i rows and are not contained in the rightmost $\delta - 1 - i$ columns. Assume the contrary, that there exists an $[F, \nu_i + 1, \delta]_q$ code C.

Let $B_1, B_2, \ldots, B_{\nu_i+1}$ linearly independent codewords in C. Since the number of linearly independent codewords is greater than the number of entries in A_i, there exists a nontrivial linear combination $Y = \sum_{j=1}^{\nu_i+1} \alpha_j B_j$ for which the ν_i entries of A_i are equal zeros. Y is not the all-zeros codeword since the B_i's are linearly independent.
Proof. Let $B_1, B_2, \ldots, B_{\nu_i+1}$ linearly independent codewords in C. Since the number of linearly independent codewords is greater than the number of entries in A_i, there exists a nontrivial linear combination $Y = \sum_{j=1}^{\nu_j+1} \alpha_j B_j$ for which the ν_i entries of A_i are equal zeros. Y is not the all-zeros codeword since the B_i's are linearly independent.

\mathcal{F} has outside A_i exactly i rows and $\delta - 1 - i$ columns. These i rows ($\delta - 1 - i$ columns) can contribute at most i ($\delta - 1 - i$, respectively) to the rank of Y. Thus, Y is a nonzero codeword with rank less than δ, a contradiction, and the theorem is proved.
Ferrers Diagrams

Theorem
For a given i, $0 \leq i \leq \delta - 1$, if v_i is the number of dots in a Ferrers diagram F, which are not contained in the first i rows and are not contained in the rightmost $\delta - 1 - i$ columns then $\min_i\{v_i\}$ is an upper bound on $\text{dim} (F, \delta)_q$.

Corollary
An upper bound on $\text{dim} (F, \delta)_q$ is the minimum number of dots that can be removed from F such that the diagram remains with at most $\delta - 1$ rows of dots or at most $\delta - 1$ columns of dots.
Theorem

There exists a \([k \times m, q, \delta]_q\) code which satisfies
\[q = \min\{k(m - \delta + 1), m(k - \delta + 1)\}\]

Corollary

An upper bound on \(\dim (F, \delta)_q\) is the minimum number of dots that can be removed from \(F\) such that the diagram remains with at most \(\delta - 1\) rows of dots or at most \(\delta - 1\) columns of dots.
There exists a $[k \times m, \varphi, \delta]_q$ code which satisfies
\[
\varphi = \min\{k(m - \delta + 1), m(k - \delta + 1)\}.
\]

Let \mathcal{F} be an $m \times \eta$, $m \geq \eta$, Ferrers diagram. Assume that each one of the rightmost $\delta - 1$ columns of \mathcal{F} has m dots, and the ith column from the left of \mathcal{F} has γ_i dots. Then an $[\mathcal{F}, \sum_{i=1}^{\eta-\delta+1} \gamma_i, \delta]_q$ code which attains the bound of the corollary exists.

An upper bound on $\dim (\mathcal{F}, \delta)_q$ is the minimum number of dots that can be removed from \mathcal{F} such that the diagram remains with at most $\delta - 1$ rows of dots or at most $\delta - 1$ columns of dots.
There exists a \([k \times m, q, \delta]_q\) code which satisfies

\[
q = \min\{k(m - \delta + 1), m(k - \delta + 1)\}
\]

Let \(F\) be an \(m \times \eta, m \geq \eta\), Ferrers diagram. Assume that each one of the rightmost \(\delta - 1\) columns of \(F\) has \(m\) dots, and the \(i\)th column from the left of \(F\) has \(\gamma_i\) dots. Then an \([F, \sum_{i=1}^{\eta-\delta+1} \gamma_i, \delta]_q\) code which attains the bound of the corollary exists.

In any \([m \times \eta, m(\eta - \delta + 1), \delta]_q\) rank-metric code \(C\), the codewords which have **zeros** in all the entries which are not contained in \(F\) form an \([F, \sum_{i=1}^{\eta-\delta+1} \gamma_i, \delta]_q\) code.
Network Coding and Related Combinatorial Structures

A SHORT BREAK
Multilevel Construction

First step - choose a binary code C of length n.

For each $c \in C$ do

Second step - echelon Ferrers form $EF(c)$.

Third step - construct an $[F, q, \delta]_q$ Ferrers diagram rank-metric code C_F for the Ferrers diagram F of $EF(c)$.

Fourth step - lift C_F to an $(n, q^o, 2\delta, k)_q$ code C_c; the echelon Ferrers form of $X \in C_c$ is $EF(c)$.

$C = \bigcup_{c \in C} C_c$
Multilevel Construction

If C should be an $(n, M, 2\delta, k)_q$ code then C is a constant weight code with weight k minimum Hamming distance 2δ.

If C should be an $(n, M, d)_q$ code, where d is the subspace distance, then C is a code with minimum Hamming distance d.

If C should be an $(n, M, d)_q$ code, where d is the injection distance, then C is a code with minimum asymmetric distance d.
Asymptotic Behavior

Theorem

\[
A_q(n, 2\delta, k) \leq \frac{\left[\frac{n}{k-\delta+1}\right]_q}{\left[\frac{k}{k-\delta+1}\right]_q}
\]

\[
Q_\delta(q) = \prod_{j=\delta}^{\infty} (1 - q^{-j})
\]

\[
\begin{align*}
\left[\frac{n}{k-\delta+1}\right]_q &= \frac{(q^n - 1)(q^{n-1} - 1) \cdots (q^{n-k+\delta} - 1)}{(q^k - 1)(q^{k-1} - 1) \cdots (q^\delta - 1)} \\
&= q^{(n-k)(k-\delta+1)} \frac{(1 - q^{-n})(1 - q^{-n+1}) \cdots (1 - q^{-n+k-\delta})}{(1 - q^{-k})(1 - q^{-k+1}) \cdots (1 - q^{-\delta})} \\
&< \frac{q^{(n-k)(k-\delta+1)}}{\prod_{j=\delta}^{\infty} (1 - q^{-j})}
\end{align*}
\]
Asymptotic Behavior

Theorem

\[
A_q(n, 2\delta, k) \leq \frac{\left\lfloor \frac{n}{k-\delta+1} \right\rfloor_q}{\left\lfloor \frac{k}{k-\delta+1} \right\rfloor_q} < \frac{q^{(n-k)(k-\delta+1)}}{\prod_{j=\delta}^{\infty} (1-q^{-j})}
\]

\[
Q_\delta(q) = \prod_{j=\delta}^{\infty} (1 - q^{-j})
\]

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5776</td>
<td>0.8402</td>
<td>0.9181</td>
<td>0.9504</td>
<td>0.9763</td>
</tr>
<tr>
<td>3</td>
<td>0.7701</td>
<td>0.9452</td>
<td>0.9793</td>
<td>0.9900</td>
<td>0.9966</td>
</tr>
<tr>
<td>4</td>
<td>0.8801</td>
<td>0.9816</td>
<td>0.9948</td>
<td>0.9980</td>
<td>0.9995</td>
</tr>
<tr>
<td>5</td>
<td>0.9388</td>
<td>0.9938</td>
<td>0.9987</td>
<td>0.9996</td>
<td>0.9999</td>
</tr>
</tbody>
</table>
Multilevel Construction

- \(q = 2, \, n = 8, \, k = 4, \, \delta = 2 \)

- \(A_2(8, 4, 4) \geq 4573 \)

<table>
<thead>
<tr>
<th>(c \in C)</th>
<th>size of (C_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11110000</td>
</tr>
<tr>
<td>2</td>
<td>11001100</td>
</tr>
<tr>
<td>3</td>
<td>11000011</td>
</tr>
<tr>
<td>4</td>
<td>10101010</td>
</tr>
<tr>
<td>5</td>
<td>10100101</td>
</tr>
<tr>
<td>6</td>
<td>10011001</td>
</tr>
<tr>
<td>7</td>
<td>10010110</td>
</tr>
<tr>
<td>8</td>
<td>01101001</td>
</tr>
<tr>
<td>9</td>
<td>01100110</td>
</tr>
<tr>
<td>10</td>
<td>01011010</td>
</tr>
<tr>
<td>11</td>
<td>01010101</td>
</tr>
<tr>
<td>12</td>
<td>00111100</td>
</tr>
<tr>
<td>13</td>
<td>00110011</td>
</tr>
<tr>
<td>14</td>
<td>00001111</td>
</tr>
</tbody>
</table>
Multilevel Construction

$q = 2$, $n = 7$, $d = 3$

$A_2(7, 3) \geq 394$

<table>
<thead>
<tr>
<th>$c \in C$</th>
<th>size of \mathbb{C}_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1110000</td>
</tr>
<tr>
<td>2</td>
<td>1001001</td>
</tr>
<tr>
<td>3</td>
<td>1000110</td>
</tr>
<tr>
<td>4</td>
<td>0101010</td>
</tr>
<tr>
<td>5</td>
<td>0100101</td>
</tr>
<tr>
<td>6</td>
<td>0011100</td>
</tr>
<tr>
<td>7</td>
<td>0010011</td>
</tr>
<tr>
<td>8</td>
<td>0111001</td>
</tr>
<tr>
<td>9</td>
<td>0110110</td>
</tr>
<tr>
<td>10</td>
<td>1010101</td>
</tr>
<tr>
<td>11</td>
<td>1011010</td>
</tr>
<tr>
<td>12</td>
<td>1101100</td>
</tr>
<tr>
<td>13</td>
<td>1100011</td>
</tr>
<tr>
<td>14</td>
<td>0001111</td>
</tr>
<tr>
<td>15</td>
<td>0000000</td>
</tr>
<tr>
<td>16</td>
<td>1111111</td>
</tr>
</tbody>
</table>
Let C be an $(n, M, d)_q$ code in the Hamming space. The punctured code C' is an $(n - 1, M, d - 1)_q$ code obtained from C by deleting one coordinate.

Let X be an ℓ-dimensional subspace of \mathbb{F}_q^n such that the unity vector with a one in the ith coordinate is not an element in X. The ith coordinate puncturing of X, $\Delta_i(X)$, is defined as the ℓ-dimensional subspace of \mathbb{F}_q^{n-1} obtained from X by deleting the ith coordinate from each vector of X.
Punctured Codes

\(\mathbb{C} \subseteq P_q(n) \)

\(Q \in G_q(n, n-1) \)

\(u \in \mathbb{F}_q^n, u \notin Q \)

\(t \) is the unique position of \(\nu(Q) \) with a zero.

The punctured code of \(\mathbb{C} \)

\[C'_{Q,u} = C_Q \cup C_{Q,u} \]

\[C_Q = \{ \Delta_t(X) : X \in \mathbb{C}, X \subseteq Q \} \]

\[C_{Q,u} = \{ \Delta_t(X \cap Q) : X \in \mathbb{C}, u \in X \} \]
The punctured code \mathbb{C}_Q,u of an $(n, M, d)_q$ code \mathbb{C} is an $(n - 1, M', d - 1)_q$ code.

If \mathbb{C} is an $(n, M, d, k)_q$ code then there exist Q, u and an $(n - 1, M', d - 1)_q$ code $\mathbb{C}'_{Q,u}$ such that

$$M' \geq \frac{M(q^{n-k} - q^{k-2})}{q^n - 1}.$$
If \(\mathbb{C} \) is an \((n, M, d, k)\) code then there exist \(Q, u \) and an \((n - 1, M', d - 1)\) code \(\mathbb{C}'_{Q,u} \) such that \(M' \geq \frac{M(q^{n-k} - q^k - 2)}{q^n - 1} \).

Theorem

Proof

\(Q \) can be chosen in \(\frac{q^n - 1}{q - 1} \) different ways. Each \(k \)-dimensional subspace of \(\mathbb{P}_q(n) \) is contained in \(\frac{q^{n-k} - 1}{q - 1} \) \((n - 1)\)-dimensional subspaces of \(\mathbb{P}_q(n) \). Thus, there exists an \((n - 1)\)-dimensional subspace \(Q \) such that \(|\mathbb{C}_Q| \geq M \frac{q^{n-k} - 1}{q^n - 1} \).
Q can be chosen in \(\frac{q^n-1}{q-1} \) ways. A \(k \)-dimensional subspace of \(P_q(n) \). Thus, there exists \(Q \) such that \(|\mathbb{C}_Q| \geq M \frac{q^{n-k}-1}{q^{n-1}} \).

There are \(M - |\mathbb{C}_Q| \) codewords in \(\mathbb{C} \) which are not contained in \(Q \). If \(X \in \mathbb{C} \) is such codeword then \(\dim (X \cap Q) = k - 1 \). Therefore, \(X \) contains \(q^k - q^{k-1} \) vectors which do not belong to \(Q \). In \(\mathbb{F}_q^n \) there are \(q^n - q^{n-1} \) vectors which do not belong to \(Q \). There exists an \((n - 1) \)-dimensional subspace \(Q \in P_q(n) \) and \(u \notin Q \) such that \(|\mathbb{C}_{Q,u}| \geq \frac{(M - |\mathbb{C}_Q|)(q^k - q^{k-1})}{q^n - q^{n-1}} = \frac{M - |\mathbb{C}_Q|}{q^{n-k}} \).
Punctured Codes

Proof

We have
\[|\mathbb{C}_Q| \geq M \frac{q^{n-k}-1}{q^n-1}. \]

We have
\[|\mathbb{C}_{Q,u}| \geq \frac{(M-|\mathbb{C}_Q|)(q^k-q^{k-1})}{q^n-q^{n-1}} = \frac{M-|\mathbb{C}_Q|}{q^{n-k}}. \]

Therefore, there exists an \((n-1, M', d-1)_q\) code \(\mathbb{C}_{Q,u}'\) such that
\[
M' = |\mathbb{C}_Q| + |\mathbb{C}_{Q,u}| \geq \frac{|\mathbb{C}_Q| q^{n-k} + M - |\mathbb{C}_Q|}{q^{n-k}} \\
= \frac{(q^{n-k}-1)|\mathbb{C}_Q| + M}{q^{n-k}} \geq \frac{(q^{n-k}-1)M(q^{n-k}-1)+M(q^n-1)}{(q^n-1)q^{n-k}} \\
= \frac{M(q^{n-k}+q^k-2)}{q^n-1}. \]
Let \mathbb{C} be the $(8, 4573, 4, 4)_2$ code obtained by the multilevel construction. Let Q be the 7-dimensional subspace whose 7×8 generator matrix is

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}.
$$

By puncturing \mathbb{C} with Q and $u = 10000001$ we obtain a code $\mathbb{C}'_{Q,u}$ whose size is 573 to which the null space and \mathbb{F}_2^7 can be added, and hence $A_2(7, 3) \geq 575$ (compared to 394 by the multilevel construction).
Cyclic Codes

α primitive in \mathbb{F}_{q^n}

$\mathbb{C} \subseteq P_q(n)$

$V = \{0, \alpha^{i_1}, \alpha^{i_2}, \ldots, \alpha^{i_{q^k-1}}\}$

cyclic shift

$\alpha V = \{0, \alpha^{i_1+1}, \alpha^{i_2+1}, \ldots, \alpha^{i_{q^k-1}+1}\}$

\mathbb{C} is a cyclic code if $V \in \mathbb{C}$ implies that $\alpha V \in \mathbb{C}$.
q-Steiner Systems (cyclic)

$S(2, 3, 13)_2$

α primitive in $GF(2^{13})$

$V = \{0, \alpha^{i1}, \alpha^{i2}, \alpha^{i3}, \alpha^{i4}, \alpha^{i5}, \alpha^{i6}, \alpha^{i7}\}$

$\alpha V = \{0, \alpha^{i1+1}, \alpha^{i2+1}, \alpha^{i3+1}, \alpha^{i4+1}, \alpha^{i5+1}, \alpha^{i6+1}, \alpha^{i7+1}\}$

$F(V) = \{0, \alpha^{2\cdot i1}, \alpha^{2\cdot i2}, \alpha^{2\cdot i3}, \alpha^{2\cdot i4}, \alpha^{2\cdot i5}, \alpha^{2\cdot i6}, \alpha^{2\cdot i7}\}$

cyclic shift

Frobenius map

15 representatives

normalizer of Singer subgroup automorphism

1 597 245 3-dimensional subspaces
Linearized polynomials are a special family of polynomials whose roots form a subspace. These polynomials were used to form a subspace code whose parameters are exactly as the ones of lifted MRD codes.

$$L(x) = \sum_{i=0}^{d} a_i x^{q^i}, \quad a_i \in \mathbb{F}_{q^m}$$

The roots of $L(X)$ are in a field \mathbb{F}_{q^n}, where m divides n.
Linearized polynomials are a special family of polynomials whose roots form a subspace. These polynomials were used to form a subspace code whose parameters are exactly as the ones of lifted MRD codes.

Subspace polynomials are a subclass of the linearized polynomials. The roots of a subspace polynomial have multiplicity one. The subspaces that they form can be used to form cyclic codes.
Network Coding and Related Combinatorial Structures

END OF LECTURE 9