Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)
Part I: Background and Motivation

- 1 What Is It All About?
- 2 Computational Models
Chapter 2: Computational Models

• 2.2 Ingredients
• 2.3 Page Model
• 2.4 Object Model
• 2.5 Roadmap
• 2.6 Lessons Learned

“Between theory and practice, some talk as they were two. Between theory and practice, both can be gained.”
(Bhagavad-gita 5:4)
Reminder: Database System Layers

Clients

Database Server

Requests

Language & Interface Layer

Query Decomposition & Optimization Layer

Query Execution Layer

Access Layer

Storage Layer

Data Accesses

Database

Data Accesses

Database

Request Execution Threads
Ingredients

• Elementary operations
• Transactions (i.e., transaction program executions)
• Histories and schedules
• Characterization of correct schedules
• Protocols (i.e., rules for online algorithms)
Chapter 2: Computational Models

• 2.2 Ingredients

• 2.3 Page Model

• 2.4 Object Model

• 2.5 Roadmap

• 2.6 Lessons Learned
Page Model

“Syntax”:

Definition 2.2 (Page Model Transaction):
A *transaction* \(t \) is a partial order of steps (actions) of the form \(r(x) \) or \(w(x) \), where \(x \in D \) and reads and writes as well as multiple writes applied to the same object are ordered.
We write \(t = (\text{op}, <) \)
for transaction \(t \) with step set \(\text{op} \) and partial order \(<\).

Example: \(r(s) \) \(w(s) \) \(r(t) \) \(w(t) \)

“Semantics”:

Interpretation of \(j^{th} \) step, \(p_j \), of \(t \):
If \(p_j = r(x) \), then interpretation is assignment \(v_j := x \) to local variable \(v_j \)
If \(p_j = w(x) \) then interpretation is assignment \(x := f_j(v_{j_1}, ..., v_{j_k}) \).
with unknown function \(f_j \) and \(j_1, ..., j_k \) denoting \(t \)‘s prior read steps.
Example transactions

\[\begin{align*}
 r_1(x) &\rightarrow w_1(x) \\
 r_1(z) &
 \\
 r_2(x) &\rightarrow w_2(y) \\
 r_3(z) &\rightarrow w_3(y) \\
 w_3(z) &
\end{align*} \]
Chapter 2: Computational Models

- 2.2 Ingredients
- 2.3 Page Model
- **2.4 Object Model**
- 2.5 Roadmap
- 2.6 Lessons Learned
Definition 2.3 (Object Model Transaction):
A transaction t is a (finite) tree of labeled nodes with
• the transaction identifier as the label of the root node,
• the names and parameters of invoked operations as labels of inner nodes, and
• page-model read/write operations as labels of leaf nodes, along with a partial order $<$ on the leaf nodes such that for all leaf-node operations p and q with p of the form $w(x)$ and q of the form $r(x)$ or $w(x)$ or vice versa, we have $p < q \lor q < p$

Special case: layered transactions
(all leaves have same distance from root)

Derived inner-node ordering: $a < b$ if all leaf-node descendants of a precede all leaf-node descendants of b
Example: DBS Internal Layers

SQL command accesses records in Austin

SQL command inserts a new Austin record
Example: Business Objects

Fund transfer from acnt x to y
\textit{x} - record

Withdraw (x, 1000)

Add record to tail of queue, first read header record a

Deposit (y, 1000)
Chapter 2: Computational Models

- 2.2 Ingredients
- 2.3 Page Model
- 2.4 Object Model
- 2.5 Roadmap
- 2.6 Lessons Learned
Roadmap

Part II: Concurrency Control
- 3 Notions of Correctness PM
- 4 CC Algorithms
- 5 Multiversion CC
- 6 Notions of Correctness OM
- 7 CC Algorithms on Objects
- 8 CC on Relational DB
- 9 CC on Search Structures
- 10 Impl. & Pragmatic Issues

Part III: Recovery
- 11 Transaction Recovery
- 12 Crash Recovery Correctness
- 13 CR Algorithms PM
- 14 CR Algorithms OM
- 15 Special Issues of Recovery
- 16 Media Recovery
- 17 Application Recovery

Part IV: Coordination of Distributed Transactions
- 18 Distributed CC
- 19 Distributed Transaction Recovery
Chapter 2: Computational Models

- 2.2 Ingredients
- 2.3 Page Model
- 2.4 Object Model
- 2.5 Roadmap
- 2.6 Lessons Learned
Lessons Learned

“Nothing is as practical as a good theory.” (Albert Einstein)