Part II: Concurrency Control

- 3 Concurrency Control: Notions of Correctness for the Page Model
- 4 Concurrency Control Algorithms
- 5 Multiversion Concurrency Control
- 6 Concurrency Control on Objects: Notions of Correctness
- 7 Concurrency Control Algorithms on Objects
- 8 Concurrency Control on Relational Databases
- 9 Concurrency Control on Search Structures
- 10 Implementation and Pragmatic Issues
7 Concurrency Control Algorithms on Objects

- 7.2 Locking for Flat Object Transactions
 - 7.3 Layered Locking
 - 7.4 Locking on General Transaction Forests
 - 7.5 Hybrid Algorithms
 - 7.6 Locking for Return-value Commutativity
 - 7.7 Lessons Learned

“A journey of thousand miles must begin with a single step.” (Lao-tse)
2PL for Flat Object Schedules

• introduce a special lock mode for each operation type
• derive lock compatibility from state-independent commutativity

• **Lock acquisition rule:**
 \(L_1 \) operation \(f(x) \) needs to lock \(x \) in \(f \) mode

• **Lock release rule:**
 Once an \(L_1 \) lock of \(f(x) \) is released, no other \(L_1 \) lock can be acquired.

Example:

\[
\begin{array}{c}
\text{deposit(a)} \\
\hline
\text{deposit(b)}
\end{array}
\]
\[
\begin{array}{c}
\text{withdraw (c)}
\end{array}
\]

\[
\begin{array}{c}
\text{withdraw(a)}
\end{array}
\]
7 Concurrency Control Algorithms on Objects

- 7.2 Locking for Flat Object Transactions
- 7.3 Layered Locking
- 7.4 Locking on General Transaction Forests
- 7.5 Hybrid Algorithms
- 7.6 Locking for Return-value Commutativity
- 7.7 Lessons Learned
Layered 2PL

• **Lock acquisition rule:**

 Lᵢ operation f(x) with parent p, which is now a subtransaction, needs to lock x in f mode

• **Lock release rule:**

 Once an Lᵢ lock of f(x) with parent p is released, no other child of p can acquire any locks.

• **Subtransaction rule:**

 At the termination of an Lᵢ operation f(x), all L_(i-1) locks acquired for children of f(x) are released.

Theorem 7.1:
Layered 2PL generates only tree reducible schedules.

Proof: All level-to-level schedules are OCSR, hence the claim (by Theorem 6.2).

Special cases:

• single-page subtransactions merely need latching

• for all-commutative Lᵢ operations, transactions are decomposed into sequences of independently isolated, chained subtransactions
2-Level 2PL Example

store(z)

modify(y)

modify(w)

fetch(x)

r(t) r(p)

r(q)

w(q) w(p)

w(t)

r(t) r(p) w(p)

r(t) r(p) w(p)

r(t) r(p) w(p)

r(t) r(p) w(p)
3-Level Example

Insert Into Persons
Values (Name=..., City="Austin", Age=29, ...)

Select Name
From Persons
Where City="Seattle"
And Age=29

Select Name
From Persons
Where Age=30

store(x) insert
(CityIndex, "Austin", @x)

search
(CityIndex, "Seattle")

insert
(AgeIndex, 29, @x)

search
(AgeIndex, 29)

search
(AgeIndex, 30)

fetch(z)

r(p) w(p) r(r) r(n)

r(r) r(l) r(n) w(l) r(l) r(n') r(l') r(r') r(n') r(l') w(l') r(p) w(p)

r(r') r(n') r(l') r(p) w(p)
3-Level 2PL Example

Insert Into Persons
Values (Name=..., City="Austin", Age=29, ...)

Select Name From Persons
Where City="Seattle" And Age=29

Select Name From Persons
Where Age=30

store(x)
iinsert(CityIndex, "Austin", @x)
ssearch(CityIndex, "Seattle")
insert(AgeIndex, 29, @x)
ssearch(AgeIndex, 30)
fetch(z)
ssearch(AgeIndex, 29)
fetch(y)

r(p) w(p)

L2

L1

L0
Selective Layered 2PL

For n-level schedule with layers $L_n, ..., L_0$ apply locking on selected layers $L_{i_0}, ..., L_{i_k}$ with $1 \leq k \leq n$, $i_0 = n$, $i_k = 0$, $i_\nu > i_{\nu+1}$, skipping all other layers

- **Lock acquisition rule:**
 L_ν operation $f(x)$ with $L_{\nu-1}$ ancestor p, which is now a subtransaction, needs to lock x in f mode

- **Lock release rule:**
 Once an L_ν lock of $f(x)$ with $L_{\nu-1}$ ancestor p is released, no other L_ν descendant of p can acquire any locks.

- **Subtransaction rule:**
 At the termination of an L_ν operation $f(x)$, all $L_{\nu+1}$ locks acquired for descendants of $f(x)$ are released.
Select Name From Persons
Where City="Seattle" And Age=29

Insert Into Persons
Values (Name=..., City="Austin", Age=29, ...)

Select Name From Persons
Where Age=30
7 Concurrency Control Algorithms on Objects

• 7.2 Locking for Flat Object Transactions
• 7.3 Layered Locking
• 7.4 Locking on General Transaction Forests
 • 7.5 Hybrid Algorithms
 • 7.6 Locking for Return-value Commutativity
 • 7.7 Lessons Learned
Problem Scenario

Problem: layers can be “bypassed”
Solution: keep locks in “retained” mode
General Object-Model 2PL

• **Lock acquisition rule:**
 Operation $f(x)$ with parent p needs to lock x in f mode

• **Lock conflict rule:**
 A lock requested by $r(x)$ is granted if
 • either no conflicting lock on x is held
 • or when for every transaction that holds a conflicting lock, say $h(x)$,
 $h(x)$ is a retained lock and r and h have ancestors r' and h' such that
 h' is terminated and commutes with r'

• **Lock release rule:**
 Once a lock of $f(x)$ with parent p is released,
 no other child of p can acquire any locks.

• **Subtransaction rule:**
 At the termination of $f(x)$,
 all locks acquired for children of $f(x)$ are converted into retained locks.

• **Transaction rule:**
 At the termination of a transaction, all locks are released.

Theorem 7.2:
The object-model 2PL generates only tree-reducible schedules.
Proof Sketch for Theorem 7.2

- If all locks of \(t_1 \) were kept until commit, then tree reducibility were trivially guaranteed.
- Now show that retained \(f_1 \) lock by \(h_1 \) is sufficient to prevent non-commutative subtree:

Let \(f_2 \) be the first conflict with any lock under \(h_1 \); \(f_2 \) is allowed to proceed only if \(h_1 \) is terminated and \(h_2 \) commutes with \(h_1 \):
- \(\rightarrow \) isolate \(h_2 \) from \(h_1 \)
- \(\rightarrow \) prune \(h_2 \) and \(h_1 \)
- \(\rightarrow \) commute \(h_2 \) with \(h_1 \) if necessary
7 Concurrency Control
Algorithms on Objects

• 7.2 Locking for Flat Object Transactions
• 7.3 Layered Locking
• 7.4 Locking on General Transaction Forests

7.5 Hybrid Algorithms

• 7.6 Locking for Return-value Commutativity
• 7.7 Lessons Learned
Theorem 7.3:
For 2-level schedules the combination of 2PL at L₁ and FOCC at L₀ generates only tree-reducible schedules.

Theorem 7.4:
For 2-level schedules the combination of 2PL at L₁ and ROMV at L₀ generates only tree-reducible schedules.

These combinations are particularly attractive because subtransactions are short and there is a large fraction of read-only subtransactions.
7 Concurrency Control Algorithms on Objects

• 7.2 Locking for Flat Object Transactions
• 7.3 Layered Locking
• 7.4 Locking on General Transaction Forests
• 7.5 Hybrid Algorithms
• 7.6 Locking for Return-value Commutativity
• 7.7 Lessons Learned
Locking for Return-value

Commutativity

• introduce a special lock mode for each pair
 \(<\text{operation type, return value}>\),

 Example: lock modes

 withdraw-ok, withdraw-no, deposit-ok, getbalance-ok

• defer lock conflict test until end of subtransaction

• rollback subtransaction if lock cannot be granted and retry
Escrow Locking

... on bounded counter object x with lower bound $low(x)$ and upper bound $high(x)$

Approach:
- maintain infimum $inf(x)$ and supremum $sup(x)$ for the value of x taking into account all possible outcomes of active transactions
- adjust $inf(x)$ and $sup(x)$ upon
 - operations $incr(x)$, $decr(x)$, and
 - commit or abort of transactions
Escrow Locking Pseudocode

<table>
<thead>
<tr>
<th>incr(x, Δ):</th>
<th>decre(x, Δ):</th>
</tr>
</thead>
<tbody>
<tr>
<td>if $x.sup + \Delta \leq x.high$ then</td>
<td>if $x.low \leq x.inf - \Delta$ then</td>
</tr>
<tr>
<td>$x.sup := x.sup + \Delta$; return ok</td>
<td>$x.inf := x.inf - \Delta$; return ok</td>
</tr>
<tr>
<td>else if $x.inf + \Delta > x.high$ then</td>
<td>else if $x.low > x.sup - \Delta$ then</td>
</tr>
<tr>
<td>return no</td>
<td>return no</td>
</tr>
<tr>
<td>else wait fi fi;</td>
<td>else wait fi fi;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>commit(t):</th>
<th>abort(t):</th>
</tr>
</thead>
<tbody>
<tr>
<td>for each op incr(x, Δ) by t do $x.inf := x.inf + \Delta$ od;</td>
<td>for each op incr(x, Δ) by t do $x.sup := x.sup - \Delta$ od;</td>
</tr>
<tr>
<td>for each op decre(x, Δ) by t do</td>
<td>for each op decre(x, Δ) by t do</td>
</tr>
<tr>
<td>$x.sup := x.sup - \Delta$ od;</td>
<td>$x.inf := x.inf + \Delta$ od;</td>
</tr>
</tbody>
</table>
Escrow Locking Example

constraint:
\[0 \leq x \]
\[x^{(0)} = 100 \]
\[\begin{align*}
[20, 100] & \quad [10, 100] & \quad [10, 150] & \quad [10, 70] & \quad [20, 70] & \quad [50, 70] & \quad [x_{\text{inf}}, x_{\text{sup}}]
\end{align*} \]
\[x^{(4)} = 50 \]
Escrow Deadlock Example

\[x(0) = 0 \]

\[t_1 \]
- incr(x,10)
- update(y)

\[t_2 \]
- incr(x,10)
- update(z)

\[t_3 \]
- incr(x,10)

\[t_4 \]
- getval(y)
- getval(z)
- decr(x,20)
7 Concurrency Control Algorithms on Objects

- 7.2 Locking for Flat Object Transactions
- 7.3 Layered Locking
- 7.4 Locking on General Transaction Forests
- 7.5 Hybrid Algorithms
- 7.6 Locking for Return-value Commutativity
- 7.7 Lessons Learned
Lessons Learned

- Layered 2PL is the fundamental protocol for industrial-strength data servers with record granularity locking (it explains the trick of “long locking” and “short latching”).
- This works for all kinds of ADT operations within layers; decomposed transactions with chained subtransactions (aka. “Sagas”) are simply a special case.
- Non-layered schedules require additional, careful locking rules.
- Locking on some layers can be combined with other protocols (e.g., ROMV or FOCC) on other layers.
- Escrow locking on counter objects is an example for additional performance enhancements by exploiting rv commutativity.