Principles of Managing Uncertain Data

Lecture 3: Querying Complexity
Table of Contents

1. **Introduction**
2. **Data and Combined Complexity**
3. **Parameterized Complexity**
4. **Input-Output Complexity**
Complexity Measures for Database Querying

- Classical complexity theory considers two types of problems:
 - Decision: given x, decide whether x is a yes/no input
 - Function: given x, compute the $f(x)$ for some function f
- Database queries are typically so general that there are no “easy” (e.g., polynomial-time) problems
- There are certain general parameters of a query-evaluation problem that have a major impact on the complexity, and allow to isolate significant “islands of tractability”
- Hence, we often adopt *finer* notions of complexity
The most important feature of query evaluation is that databases are typically large, whereas queries/schemas are tiny. This gives rise to various notions of complexity:

- *Data complexity*
- *Parameterized complexity*
Queries may be asked to compute huge answers (e.g., Cartesian products)

Is a query hard because it is asked to compute a huge object? Or it is hard even for a small output?

- What is the complexity *per output bit*?

This gives rise to additional notions of complexity:

- *Input-output complexity*
- And in particular, *enumeration complexity*
We will learn the aforementioned notions of complexity
Table of Contents

1 Introduction

2 Data and Combined Complexity

3 Parameterized Complexity

4 Input-Output Complexity
We consider computational problems that involve one or more of the following components:

- Schema S
- A set Σ of constraints
- A query Q
- A database instance I

Combined complexity: everything is given as input

Data complexity: I is given as input, everything else is fixed

Formally, we consider infinitely many computational problems $P_{S,\Sigma,Q}$, one per combination of S, Σ and Q.
Example: Complexity of CQ Answering

Problem Def. (Boolean CQ Evaluation)

Given a schema S, a Boolean CQ Q over S and an instance I over S, determine whether $Q(I) = \text{true}$.

We will show that this problem is NP-complete under *combined complexity*, by reduction from the Clique problem.

Problem Def. (Clique)

Given a graph $G = (V, E)$ and a number k, determine whether G contains a clique of size k, that is, a subset U of V such that $|U| = k$ and every two nodes in U are neighbours.
Reduction

- Given $G = (V, E)$ with $V = \{1, \ldots, n\}$, and k, construct:
 - $S = \{R_E/2\}$
 - $I_G = \{R_E(i, j) \mid \{i, j\} \in E \text{ and } i < j\}$
 - Q_k is a CQ with existential variables X_1, \ldots, X_k, and an atom $R_E(X_i, X_j)$ for every i and j with $1 \leq i < j \leq k$

- For example, suppose that G is the following graph:

```
1 2
\_\_\_\_\_\_
3 4
```

$I_G = \begin{array}{c|c}
R_E \\
1 & 3 \\
2 & 3 \\
2 & 4 \\
3 & 4 \\
\end{array}$

$Q_3 :– R_E(X_1, X_2), R_E(X_1, X_3), R(X_2, X_3)$
Correctness

- The reduction is correct since the following two are equivalent:
 1. G has a clique of size at least k
 2. $Q_k(I_G) = \text{true}$

- Hence, determining whether $Q(I) = \text{true}$, given S, Q and I, is NP-hard
 - Membership in NP is straightforward, hence, the problem is NP-complete

- Note: The schema S does not depend on the input (G, k), but the size of Q is quadratic in k
What is the data complexity of answering a query in RA?

- We consider the problem \(P_{S,Q} \) of computing the answers for a query \(Q \) in RA (Relational Algebra) over a given input instance \(I \) over \(S \)
- The naive way of straightforwardly executing \(Q \) runs in polynomial time!
 - What is the degree of the polynomial?
- As a special case, CQ evaluation is in polynomial time under data complexity
 - Note that data complexity is insensitive to the representation of the query
Summary for CQs

- Under *combined complexity*, CQ evaluation is intractable
 - Boolean CQ evaluation is NP-complete
 - The non-emptiness problem for CQ evaluation (i.e., is there at least one tuple in the result?) is NP-complete
- Under *data complexity*, CQ evaluation is solvable in polynomial time
 - That is, for every CQ Q there exists a polynomial-time algorithm A_Q to compute $Q(I)$ on a given instance I
 - The naive way gives a polynomial running time where the degree depends on the query (next: *Is it necessary?*)
Table of Contents

1. Introduction
2. Data and Combined Complexity
3. Parameterized Complexity
4. Input-Output Complexity
Parameterized Complexity

- *Parameterized complexity* provides a yardstick of efficiency somewhere between *data complexity* and *combined complexity*.
- Intuitively, we would like to have evaluation in polynomial time in the size of the database, but we allow the query to affect *only the coefficient* of the polynomial; not the *degree* of the polynomial.
- This is formalized and explored in the framework of *parameterized complexity*.
 - Where the *parameter* here is the size of the query.
Recall: a decision problem is a set of strings (representing problem instances)

A decision problem D is solvable in polynomial time if there exists an algorithm A and a polynomial p such that A:

- solves D (i.e., decides whether a given string is in D)
- terminates in at most $p(|x|)$ steps on every input x

A parameterized decision problem is a set of pairs (x, k), where x is a string and k is a natural number called a parameter

A parameterized decision problem P is Fixed Parameter Tractable (FPT) if there exists an algorithm A, a (computable) function f and a polynomial p such that A:

- solves P (decides whether a given (x, k) is in P)
- terminates in at most $f(k) \cdot p(|x|)$ steps on every input (x, k)
Vertex Cover

Input: Graph g, natural number k
Goal: Determine whether there is a vertex cover of size k

- Recall: a vertex cover is a set of nodes that hits all edges
- Why is this problem easy for fixed k?
Parameterized Vertex Cover

Input: Graph \(g \)

Parameter: \(k \)

Goal: Determine whether there is a vertex cover of size \(k \).
FPT Algorithm

```
VertexCover(g, k):

1  if k < 0 then
2      return false
3  if k ≥ 0 and g has no edges then
4      return true
5  select an arbitrary edge e = {u, v};
6  if VertexCover(g - u, k - 1) then
7      return true
8  if VertexCover(g - v, k - 1) then
9      return true
10  return false;
```

Why is this algorithm FPT?
Hardness in Parameterized Complexity

- Like classical complexity, in parameterized complexity there are also problems that are strongly assumed to be hard
 - That is, not FPT
- This is captured by the \(W\)-hierarchy (that we do not define formally here)
 - \(W[1]\)-hard is not likely to be FPT
 - \(W[2]\)-hard is harder than \(W[1]\), etc.
- Examples of \(W[1]\)-hard problems:
 - Independent set: \(\{(g, k) \mid g \text{ has an ind. set of size } k\}\)
 - Clique: \(\{(g, k) \mid g \text{ has a clique of size } k\}\) (same problem)
 - We will see another one next
- Example of a \(W[2]\)-hard problem:
 - Dominating set: \(\{(g, k) \mid g \text{ has a dominating set of size } k\}\)
 - Dominating set: each node is there or has a neighbor there
Parameterized CQ Evaluation

Input: Boolean CQ Q, instance I

Parameter: Size of Q

Goal: Compute $Q(I)$
Recall our reduction from maximum clique to Boolean CQ evaluation

In that reduction, the size of the CQ was determined only by \(k \)

In formal terms, our reduction is a so called FTP reduction

Hence, Boolean CQ evaluation is W[1]-hard when the size of the CQ is the parameter

Hence, no hope for FPT; the query necessarily determines the degree of the polynomial data complexity
Table of Contents

1 Introduction
2 Data and Combined Complexity
3 Parameterized Complexity
4 Input-Output Complexity
In this section we adopt the *combined complexity*, hence nothing is fixed.

Some queries evaluate to a super-polynomial (e.g., exponential) number of tuples in the worst case.

Hence, no evaluation in polynomial time... *But:*

- What if on some instance there are just a few tuples?
- Is high complexity only due to #tuples?
- What about incremental evaluation (produce as much as we have time for)?

Input-output complexity measures the time as a function of both the input and the output.

Next, we make it more formal.
Notation

If \(S \) is a (possibly infinite) set, then we denote by \(\mathcal{P}_{\text{fin}}(S) \) the set of all finite subsets of \(S \).
An enumeration problem \(E \) has an input space \(\text{In}(E) \), an output space \(\text{Out}(E) \), and it maps every input \(x \in \text{In}(E) \) into a finite subset \(E(x) \) of \(\text{Out}(E) \)

\[
E : \text{In}(E) \rightarrow \mathcal{P}_{\text{fin}}(\text{Out}(E))
\]

Examples:
- \(\text{In}(E) \): pairs (query, instance); \(\text{Out}(E) \): tuples of values
- \(\text{In}(E) \): graphs; \(\text{Out}(E) \): node sets

Computational task for \(E \): Given \(x \in \text{In}(E) \), compute (or enumerate) the items of \(E(x) \)
Let E be an enumeration problem

A solver for E is an algorithm A that, given $x \in \text{In}(E)$, produces (or prints) a sequence of elements in $\text{Out}(E)$ during its execution, and has the following properties:

- **Soundness**: every produced answer is in $E(x)$
- **Completeness**: every answer in $E(X)$ is produced
- **Nonrepeating**: no answer is produced more than once
Johnson, Papadimitriou and Yannakakis [JPY88] introduced several different notions of efficiency for enumeration algorithms

- Let E be an enumeration problem, and let A be solver for E
- **Polynomial total time**: the total execution time of A is polynomial in $(|x| + |E(x)|)$
- **Polynomial delay**: the time between every two executive outputs is polynomial in $|x|$
- **Incremental polynomial time**: after producing N elements, the time to produce the next element is polynomial in $(|x| + N)$.
Implications among Measures

Polynomial delay

↓

Incremental polynomial time

↓

Polynomial total time
Example: Path CQ

- We now look at an example of an algorithm that enumerates in polynomial total time
- Problem: evaluate a CQ of the following form over $R/2$:

$$Q_n(x_1, \ldots, x_n) :- R(x_1, x_2), R(x_2, x_3), \ldots, R(x_{n-1}, x_n)$$

- That is, compute all length-n paths of a given directed graph
 - The directed graph is represented by an instance I over R
 - Not necessarily simple paths
First Attempt

1 \(A_2 := I; \)
2 \textbf{for} \(i = 3, \ldots, n \) \textbf{do}
3 \(/ * \text{Join previous with } I */\)
4 \(A_i := \{(a_1, \ldots, a_i) \mid (a_1, \ldots, a_{i-1}) \in A_{i-1}, (a_{i-1}, a_i) \in I\}; \)
5 \textbf{return} \(A_n; \)

Given: \(Q_n, I; \) Compute: \(Q_n(I) \)

Is the algorithm correct (sound, complete, nonrepeating)?

Does the algorithm guarantee polynomial total time?
Example of a Problematic Case

$n = 7$
Revised Algorithm

1. \(I_n := I; \)
2. \quad \textbf{for} \ i = n - 1, \ldots, 2 \ \textbf{do} \nonumber \\
3. \quad \quad I_i := \{(a, b) \in I | \exists c[(b, c) \in I_{i+1}]\}; \quad \quad /* \ \text{semijoin} */ \nonumber \\
\quad /* \ \text{Now join, as in the previous (slow) algorithm} */ \nonumber \\
4. \quad \textbf{for} \ i = 3, \ldots, n \ \textbf{do} \nonumber \\
\quad \quad /* \ \text{Join previous with} \ I_i */ \nonumber \\
5. \quad \quad A_i := \{(a_1, \ldots, a_i) | (a_1, \ldots, a_{i-1}) \in A_{i-1}, (a_{i-1}, a_i) \in I_i\}; \nonumber \\
6. \quad \text{return} \ A_n; \nonumber

Given: \(Q_n, I; \) Compute: \(Q_n(I) \)

\textit{Why is this algorithm correct?}

\textit{Is it polynomial time? Polynomial total time?}
We have seen an algorithm for computing all the paths of a given length n in polynomial total time.

What about all simple paths of length n?

Problem: Deciding whether a graph g has a simple path of length n, given g and n, is NP-complete.

Generalizes the Hamiltonian path problem.

Assuming $P \neq NP$, can there be an enumeration algorithm for all simple paths, of a given length, that runs in:

- Polynomial delay?
- Polynomial total time?
Let E be an enumeration problem

- The *emptiness problem* for E is the following:

 Given $x \in \text{In}(E)$, is $E(x)$ empty?

- We say that E has *tractable verification* if:
 1. Deciding whether $x \in \text{In}(E)$, given x, is in polynomial time
 2. Every $y \in E(x)$ is of length polynomial in that of x
 3. Deciding whether $y \in E(x)$, given x and y, is in polynomial time

- If E has tractable verification, then the emptiness problem of E is in coNP \textit{Why?}
Proposition

Let E be an enumeration problem with tractable verification, and assume that $P \neq NP$. If the emptiness problem of E is coNP-complete, then E cannot be solved in polynomial total time.

Proof: discussion + home assignment
Next, we will see an interesting example of a polynomial-delay algorithm.

Let g be an undirected graph.

Recall: a \textit{clique} of g is a set C of nodes of g such that every two nodes in C are connected by an edge.

A clique C is \textit{maximal} if there is no clique C' such that $C \subsetneq C'$.

Do not mix with a \textit{maximum clique} that has a maximal number of nodes among all cliques.

Next, we will see a polynomial-delay algorithm for enumerating \textit{all maximal cliques} of a graph.
Discussion on Enumerating Maximal Cliques

- What is the complexity of the emptiness problem?
- How would you generate one maximal clique?
- How would you generate two maximal cliques?
- How would you generate three maximal cliques?
- How would you generate n maximal cliques for a given n?
Generating a Single Max Clique

1 \(\mathcal{C} := \emptyset; \)
2 \textbf{forall the nodes} \(v \) \textbf{of} \(g \) \textbf{do}
3 \quad \textbf{if} \; v \; \text{is connected to every node in} \; \mathcal{C} \; \text{then}
4 \quad \quad \mathcal{C} := \mathcal{C} \cup \{v\};
5 \quad \textbf{return} \; \mathcal{C}

Given: \(g \); Compute: a maximal clique

Why is the returned \(\mathcal{C} \) a clique? Why maximal?
Maximizing a Clique

1. $C := B$;
2. forall the nodes v of g do
3. if v is connected to every node in C then
4. $C := C \cup \{v\}$;
5. return C

Given: g, clique B; Compute: a maximal clique C such that $B \subseteq C$
Enumerating the Maximal Cliques [CFK⁺06]

1. \(C := \text{MaximizeClique}(g, \emptyset); \)
2. \(Q := \{C\} ; \quad */ \text{Assume log-time ops} */ \)
3. \(O := \emptyset ; \quad */ \text{Printed answers, assume log-time ops} */ \)
4. while \(Q \neq \emptyset \) do
 5. \(C := Q.\text{remove}(); \)
 6. print \(C \); \quad /* Enumeration op */
 7. \(O.\text{insert}(C) ; \quad */ O(\log|O|) */ \)
 8. forall the nodes \(v \) of \(g \) do
 9. \(B := \{v\} \cup \{u \in C \mid u \text{ is connected to } v\} \);
 10. \(C' := \text{MaximizeClique}(g, B) ; \quad */ \text{Previous slide} */ \)
 11. if \(C' \notin Q \cup O \); \quad /* O(\log|Q| + \log|O|) */
 then
 12. \(Q.\text{insert}(C') ; \quad */ O(\log|Q|) */ \)

Given: \(g \); Compute: all maximal cliques
Correctness and Efficiency

- Why is the algorithm *sound* (printing only maximal cliques)?
- Why is the algorithm *nonrepeating*?
- Why is the algorithm running with *polynomial delay*?
- Why is the algorithm *complete*?
Proof of Completeness

- Suppose, by way of contradiction, that some maximal clique D is not printed.
- Let D' be a maximal subset of D that is printed as part of some maximal clique, say C.
- Let v be a node in $D \setminus D'$.
 - Why does v exist?
- Consider the iteration where C and v are selected.
- In that iteration B contains $D' \cup \{v\}$.
- … and C' contains B, hence $D' \cup \{v\}$.
- … and C' is printed at some point.
- Hence, a contradiction to our choice of D'.

End of lecture 3

Querying Complexity