CDP Tutorial 3
Basics of Parallel Algorithm Design

uses some of the slides for chapters 3 and 5 accompanying
“Introduction to Parallel Computing”,
http://www-users.cs.umn.edu/~karypis/parbook
Preliminaries: Decomposition, Tasks, and Dependency Graphs

- Parallel algorithm should decompose the problem into tasks that can be executed concurrently.
- A decomposition can be illustrated in the form of a directed graph (task dependency graph)

![Graph Diagram]

5 → 7 → 3 → 4 → 2
Dependency Graphs

- nodes = tasks
- edges = dependencies
- The result of one task is required for processing the next
Degree of Concurrency

- Determines the maximum amount of tasks which can indeed run in parallel
 - An upper bound on the parallel algorithm speedup

Degree of concurrency = 3
Critical Path

- The longest path in the dependency graph
- A lower bound on program runtime

Critical path = 7 + 4 + 2 = 13
Average Degree of Concurrency

- The ratio between the critical path to the sum of all the tasks
- The speed up of the parallel algorithm

Critical path = 7+4+2 = 13

Avg. Deg. of concurrency = \frac{5+7+3+4+2}{13} = 1.6
Example: Multiplying a Dense Matrix with a Vector

- Computation of each element of output vector y is independent of other elements.
- Based on this, a dense matrix-vector product can be decomposed into n independent tasks.
Example: Multiplying a Dense Matrix with a Vector

- While tasks share data (namely, the vector b), they do not have any control dependencies
 - no task needs to wait for the (partial) completion of any other
- All tasks are of the same size in terms of number of operations

Is this the maximum number of tasks we could decompose this problem into?
Multiplying a dense matrix with a vector – 2n CPUs available

On what kind of platform will we have 2N processors?
Multiplying a dense matrix with a vector – 2n CPUs available

A matrix is divided into parts assigned to different tasks. Each task is assigned to a subset of CPUs. The matrix `A` is split into parts assigned to different tasks.

<table>
<thead>
<tr>
<th>Task 1</th>
<th>Task 2</th>
<th>Task 2n+1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2n-1</td>
<td>Task 2n</td>
<td>Task 3n</td>
</tr>
</tbody>
</table>

The matrix multiplication process involves assigning tasks to CPUs and distributing the computation load efficiently.
Granularity of Task Decompositions

- The size of tasks into which a problem is decomposed is called granularity.
Parallelization Limitations

- Parallel algorithm scalability factors:
 - In theory:
 - Amdahl’s law: \(\frac{1}{(1-A)+\frac{A}{N}} \) (upper bound on speedup)
 - In practice:
 - Task interaction overhead
 - CPU utilization
 - stalls due to data dependencies
 - imperfect load balancing
 - Excess computations (different algorithm, reuse of previous computation etc.)
Guidelines for good parallel algorithm design

- Maximize concurrency.
- Spread tasks evenly between processors to avoid idling and achieve load balancing.
- Execute tasks on critical path as soon as the dependencies are satisfied.
- Minimize (overlap) communication between processors.
Evaluating parallel algorithm

- **Speedup**
 - \(S = \frac{T_{\text{serial}}}{T_{\text{parallel}}} \)

- **Efficiency**
 - \(E = \frac{S}{\#\text{CPUs}} \)

- **Cost**
 - \(C = \#\text{CPUs} \cdot T_{\text{parallel}} \)

- **Scalability**
 - For a fixed task size: speedup as a function of number of processors (efficiency)
Evaluating parallel algorithm

- **Speedup**
 - \(S = \frac{T_{serial}}{T_{parallel}} \)

- **Efficiency**
 - \(E = \frac{S}{\#CPUs} \)

- **Cost**
 - \(C = \#CPUs \cdot T_{parallel} \)

- **Scalability**
 - For a fixed task size: speedup as a function of number of processors (efficiency)
Evaluating parallel algorithm

- **Speedup**
 \[S = \frac{T_{\text{serial}}}{T_{\text{parallel}}} \]

- **Efficiency**
 \[E = \frac{S}{\#\text{CPUs}} \]

- **Cost**
 \[C = \#\text{CPUs} \cdot T_{\text{parallel}} \]

- **Scalability**
 For a fixed task size: speedup as a function of number of processors (efficiency)
Evaluating parallel algorithm

- **Speedup**
 - \(S = \frac{T_{\text{serial}}}{T_{\text{parallel}}} \)

- **Efficiency**
 - \(E = \frac{S}{\# \text{CPUs}} \)

- **Cost**
 - \(C = \# \text{CPUs} \cdot T_{\text{parallel}} \)

- **Scalability**
 - For a fixed task size: speedup as a function of number of processors (efficiency)
Simple example

- Summing n numbers on p CPUs
 - Allocating $\frac{n}{p}$ numbers for each CPU
 - Each CPU sum its portion of the numbers
 - Now we have p numbers
Simple example

- Summing \(p \) numbers on \(\frac{p}{2} \) CPUs
 - Allocating 2 numbers for each CPU
 - Each CPU sum it’s numbers
 - Now we have \(\frac{p}{2} \) numbers

This is the result
Summing \(n \) numbers on \(p \) CPUs

- Serial Time = \(\Theta(n) \)

- Parallel Time = \(\Theta \left(\frac{n}{p} + \log p \right) \)

- Speedup = \(\Theta \left(\frac{n}{\frac{n}{p} + \log p} \right) \)

- Efficiency = \(\Theta \left(\frac{n}{\frac{n}{p} + \log p} \right) = \Theta \left(\frac{n}{n + p \cdot \log p} \right) \)

- Cost = \(\Theta \left(\left(\frac{n}{p} + \log p \right) \cdot p \right) = \Theta(n + p \cdot \log p) \)
Parallel multiplication of 3 matrices

- A, B, C – rectangular matrices \(N \times N \)
- We want to compute in parallel: \(A \times B \times C \)
- How do we achieve the maximum performance?
Parallel multiplication of 3 matrices

Every cell in T can be calculated independently from the others

Are the blue and yellow depended tasks?
Parallel multiplication of 3 matrices

\[T_{1,y} \rightarrow R_{x,y} \quad T_{n,y} \rightarrow R_{u,y} \quad T_{1,v} \rightarrow R_{x,v} \quad T_{n,v} \rightarrow R_{u,v} \]

\[X \quad = \quad C \quad R \]

\[x \quad u \quad y \quad v \]
Dynamic Task Creation: Simple Master-Worker

- Identify independent computations
- Create a queue of tasks
- Each process picks from the queue and may insert a new task to the queue
Task Granularity

- How do we select the size of each task?
Hypothetic Implementation: Multiple Threads

- Let's assign separate thread for each task we defined before.
- How do we coordinate the threads?
 - Initialize threads to know their dependencies.
 - Build “producer-consumer” like logic for every thread.