Authentication Methods

- Several authentication methods are used:
 - Declarative Security
 - HTTP-level mechanisms
 - Basic authentication scheme
 - Digest access authentication scheme
 - Server-level mechanisms
 - Programmatic Security

HTTP Basic Mechanism

- In the basic authentication scheme of HTTP, the user's name and password need to be sent with each request for a protected resource
- When the server receives a request for a protected resource, it checks whether that request has the HTTP header `Authorization: Basic username:password`
- If the name and password are accepted by the server (i.e., those of a user that has the privilege to get the page), then the requested page is returned
Browser Cooperation

- Throughout the session, the browser stores the user-name and password and automatically sends the authorization header in either one of the following cases:
 - The requested resource is under the directory of the originally authenticated resource
 - The browser received 401 from the Web server and the WWW-Authenticate header has the same realm as the previous protected resource
Digest Access Scheme

- The most serious security flaw in the basic scheme is that the name and password are sent unencrypted, and hence everyone on the network path can read it.
- If an attacker snoops a request with basic authentication, she can access to the whole protection space of the resource.
- The digest access authentication scheme solves many of the flaws of the basic schemes, such as the one above.

Digest Operation

- Like the basic, the digest scheme requires that authentication data is sent with each request for a protected resource.
- However, passwords are not sent as simple text.
- The idea is to use a one-way hash, such as MD5.
- A one-way hash H is a mapping of strings that has the following properties:
 - It is "easy" to compute $H(x)$, given the input x.
 - It is "hard" to compute x, given the mapping $H(x)$.

Digest Operation (cont)

- In the digest scheme, instead of sending the password x as simple text, the client sends $H(y)$.
- y is the concatenation of the user name, the password, an opaque generated by the server, the request URI, and more (why is the opaque needed?).
- A server that gets digested authentication data repeats the same encryption process and compares its output with the given $H(y)$.
- More details can be found in RFC 2617.

Server-Level Authentication

- A Web server can use its own authentication mechanisms rather than those of HTTP.
- Typically, server-level mechanisms act as follows:
 - The server requires authentication by redirecting the client to a special HTML form.
 - If authentication succeeds, then the server stores the username in the corresponding session object.
- Note that the browser and the HTTP headers are oblivious to server-level authentication.

Programmatic Security

- In declarative security, a page is either accessible to a user or is not.
- But what if we wanted a page to include some data that will only be shown to privileged users?
 - E.g., the grades of the user.
- In programmatic security, we enhance security checks in dynamic pages (e.g., JSP).
- Using this approach, an application can generate different contents for different users.

Declarative-Security: Pros & Cons

- Advantage: Application programs (i.e., JSP and Servlets) do not have to do anything special.
- Advantage: Security holes due to bugs are less probable.
- Disadvantage: Server-specific process.
- Disadvantage: All or nothing security:
 - Users can or cannot see the page.
 - Sometimes, what we really want is for the page content to be dependent on the user.
Security on the Internet

- The Internet is used to transmit sensitive data from clients to servers and vice-versa
 - User passwords
 - Credit card numbers
 - Private client data on remote servers (e.g., Banks)
- However, data packets are read by several computers on the way from the client to the server (and vice-versa)
 - Routers, proxies, etc.

Symmetric and Asymmetric Keys

- Data can be encrypted and decrypted using keys, which are simply large numbers
- Symmetric keys: the same key is used for both encoding and decoding of the message
- Asymmetric keys: one key is used to encode the message, and another is used to decode it
- It is considered practically impossible to decode a message without knowing the decoding key

The RSA Cryptography System

- RSA was developed in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman
- It is the based on the asymmetric key mechanism:
 - Each participant has a private key and a public key
 - The public key is known to all and the private key is kept in secret within its owner
 - Asymmetric keys: the public key is the encoding key and the private key is the decoding key
Secure Connection: A Naive Approach

- Consider the following protocol:
 - Server and Client send their public keys to each other
 - Data is encrypted using the public key of the receiver
- What is wrong with this protocol?
 - Encryption methods (public keys) are known to everyone - everyone can impersonate the participants
 - A participant cannot tell whether its received key was indeed sent by the other participant

SSL Connections

- The SSL (Secure Socket Layer) protocol is used to manage security of message transmission on the Internet
- Data encryption and decryption is based on symmetric and asymmetric keys
- The HTTPS (HTTP over SSL) protocol is actually the HTTP protocol above SSL transportation

SSL in the Network Layers

SSL Connections

- The SSL Handshake
 1. The client gets the Server’s certificate
 - Is this a good certificate?
 - hello + SSL settings
 - Client: SSL Settings + Certificate
 - Server
 2. The client creates a master secret and shares it with the server
 - Client: $O^{E}(O^{E})$
 - Server
 3. The client and the server create symmetric session keys from the master secret
 - Client: O^{E}
 - Server: O^{E}
The SSL Handshake

Data is transferred using the session keys

SSL Certificates

To assure that the replier of the first request is the server, the server sends a certificate

The certificate contains both the server's name and its public key

The certificate is issued by a Certificate Authority (CA), which is known to the client in advance (e.g., VeriSign, Thawte, RSA Secure Server, etc.)

CA signs the certificate using a digital signature, which the client can verify using a method similar to the private-public key method

The Server's Certificate

An Example: The Certificate of bankhapoalim.co.il

Authentication via SSL

- If the server needs to assure the client's identity, the first interaction after the SSL handshake will typically be a client authentication
- Client authentication is done using the regular (e.g., HTTP) authentication mechanisms
- What is the difference, though?

HTTPS approach
Web Servers

Authentication

Logs statistics

Statistics

Content negotiation
Compression
Dealing with large files - chunked transfer
Virtual hosting
Bandwidth throttling

Handles Security

Resources

- HTTP Basic Access Authentication:
 http://www.ietf.org/rfc/rfc2617.txt
- Digest Access Authentication:
- Secure Sockets Layer (SSL):
 http://tools.ietf.org/html/rfc6101,
- Transport Layer Security (TLS):