Database Management Systems
Faculty of Computer Science
Technion – Israel Institute of Technology
Course 236363
Lecture 7: Schema Normalization

Schema Anomalies
- Redundant storage
 - Repeatedly storing the same information
- Update anomaly
 - To change a repeated item, every occurrence should be changed
- Insertion anomaly
 - Some information cannot be stored without additional (possibly unavailable) information
- Deletion anomaly
 - Some information cannot be deleted without deleting additional (possibly desired) information

From ERD to Normalization
- We have learned how to design schemas using ERDs
- But it is often not enough for a proper translation into well designed relations
- ERD is limited in constraint representation; we need a more careful design to enforce such constraints
- It may be challenging to avoid anomalies when dependencies are complicated

Example
- A track has at most one consultant per faculty
- A track is contained in a single campus
- A consultant belongs to a single campus and faculty
- A faculty is in a single campus

Example
- Define the involved attributes
- Determine what dependencies hold in real life
- Decide on desired properties
- Decompose into multiple good (“normalized”) schemas
Notation

- During this lecture, we focus on schemas of a special type: a single relation over a set U of attributes, and a set F of FDs.
- So, during this lecture a schema is simply a pair (U,F) where:
 - U is a finite set of attributes
 - F is a set of FDs over U
 - (In particular, we ignore the relation name and order among attributes)

Basic Terminology

- Let (U,F) be a schema
- Recall: A superkey is a set K of attributes such that K^+ contains every attribute in U
- Recall: A key is a superkey K that does not contain any other superkey
 - That is, if $Y \subseteq K$ then Y is not a superkey
- Attributes of keys are called prime
- “Schema normalization” deals with the relationship between keys, prime attributes and nonprime attributes

Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - BCNF
 - 3NF
 - Note on 4NF

History of Normal Forms

- DB looks like a logical structure; assumed by default
- "Standard" normal form: a nonprime attribute can be determined only by a superkey
- A relation does not involve any "implicit" joins
- No nontrivial FDs except for superkeys
- No nontrivial MVDs except for superkeys

1970
1971
1974
1977
1979

Our Focus

- We mainly focus on BCNF and 3NF
 - Historically BCNF came after 3NF, but we start with BCNF since it is simpler
 - In the end we will briefly review 4NF
Boyce-Codd Normal Form (BCNF)

- A schema \((U,F)\) is in **BCNF** if every nontrivial FD implied by \(F\) has a superkey on its premise (lhs)
- That is, every \(X \rightarrow Y\) in \(F^+\) is such that
 - \(X\) is a superkey; or
 - \(Y \subseteq X\)

Examples

- **Faculty**:
 - \(\text{name, symbol, dean} \quad \text{BCNF}\)
 - \(\text{name} \rightarrow \text{symbol}\), \(\text{symbol} \rightarrow \text{dean}\), \(\text{dean} \rightarrow \text{name}\)
 - \(\text{follows, followed, fid} \quad \text{BCNF}\)
 - \(\text{follow, followed} \rightarrow \text{fid}\), \(\text{fid} \rightarrow \text{follow, followed}\)

- **Social network**:
 - \(\text{state, city, street, zip} \quad \text{not BCNF}\)
 - \(\text{state, city, street} \rightarrow \text{zip}\), \(\text{zip} \rightarrow \text{state}\)

- **Address**:
 - \(\text{track, faculty, consultant, campus} \quad \text{not BCNF}\)
 - \(\text{track, faculty} \rightarrow \text{consultant}\), \(\text{consultant} \rightarrow \text{faculty}\), \(\text{track} \rightarrow \text{campus}\), \(\text{faculty} \rightarrow \text{campus}\)

Can BCNF be Tested Efficiently?

- On the face of it, we need to consider every derived FD (exponentially many); however:
 - **Theorem**: The following are equivalent:
 1. The schema \((U,F)\) is in BCNF (i.e., every nontrivial \(X \rightarrow Y\) in \(F^+\) is such that \(X\) is a superkey)
 2. In every nontrivial \(X \rightarrow Y\) in \(F\), \(X\) is a superkey
 - Hence, it suffices to check \(F\)
 - Proof not given
 - But which direction is straightforward?
 - So what would be an efficient BCNF testing?
 - Answer: For each \(X \rightarrow Y\) in \(F\), test whether \(\text{Closure}(X)\)

Outline

- Introduction
 - Normal Forms
 - BCNF
 - 3NF
 - Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
 - Decomposition Algorithms
 - BCNF
 - 3NF
 - Note on 4NF

Third Normal Form (3NF)

- Recall: an attribute \(A\) is **prime** if it is a part of some key
- A schema is in **3NF** if for every nonprime \(A\) and nontrivial derived \(X \rightarrow A\), the set \(X\) is a superkey
- Equivalently, for every \(X \rightarrow A\) in \(F^+\) at least one of the following holds:
 - \(X\) is a superkey
 - \(A \in X\)
 - \(A\) is prime

Examples

- **Faculty**:
 - \(\text{name, symbol, dean} \quad \text{BCNF}\)
 - \(\text{name} \rightarrow \text{symbol}\), \(\text{symbol} \rightarrow \text{dean}\), \(\text{dean} \rightarrow \text{name}\)

- **Social network**:
 - \(\text{follows, followed, fid} \quad \text{BCNF}\)
 - \(\text{follow, followed} \rightarrow \text{fid}\), \(\text{fid} \rightarrow \text{follow, followed}\)

- **Address**:
 - \(\text{state, city, street, zip} \quad \text{not 3NF}\)
 - \(\text{state, city, street} \rightarrow \text{zip}\), \(\text{zip} \rightarrow \text{state}\)

- **Tracks**:
 - \(\text{track, faculty, consultant, campus} \quad \text{not BCNF not 3NF}\)
 - \(\text{track, faculty} \rightarrow \text{consultant}\), \(\text{consultant} \rightarrow \text{faculty}\), \(\text{track} \rightarrow \text{campus}\), \(\text{faculty} \rightarrow \text{campus}\)
Testing 3NF

- The following algorithm works:
 - For every nontrivial FD $X \rightarrow Y$ in F
 1. Check whether X is a superkey
 2. Check whether every attribute in $Y \setminus X$ is prime
 - As we know, (1) can be tested efficiently
 - What about (2)?
 - It is NP-complete (hence, it is unlikely that it is solvable in polynomial time)
 - And in fact, testing whether a schema is in 3NF is an NP-complete problem [JouFischer1982]

Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - BCNF
 - 3NF
 - Note on 4NF

Decomposition

- We can fix a “badly designed” schema by decomposing it into several smaller schemas
- But we need to do so correctly!
 - Do not change our intended information
 - Do not violate the FDs
 - Get a “well designed” fixed schema
- In this part, we will make the above formal
- First, we need a notation

Restricting a Set of FDs

- Let (U, F) be a schema, and let W be a subset of U
- We denote by $F[W]$ the set of all the FDs $X \rightarrow Y$ in F such that $XY \subseteq W$

Formal Definition

- A decomposition of a schema (U, F) is a collection $(X_1, F_1), \ldots, (X_k, F_k)$ of schemas such that:
 - $U = X_1 \cup \cdots \cup X_k$
 - That is, the X_i cover all the attributes in U
 - For $i = 1, \ldots, k$ we have $(F_i)^+[X_i]$
 - That is, each F_i consists of the FDs imposed by F on X_i

Decomposing and Composing Relations

- r is decomposed into r_1, r_2, \ldots, r_k and then recombined into r
Representing F_i

- Given the schema (U,F), it suffices to represent a decomposition using the collection (X_1,\ldots,X_k) without mentioning the FDs F_i
- Since F_i is $F[X_i]$ up to equivalence
- Problem: naively constructing F_i as $F[X_i]$ can be impractical, since $F[X_i]$ can be exponentially larger than U
- But this problem is solvable! We can efficiently construct F_i’s that satisfy $(F_i) = F[X_i]$

Constructing F_i

```plaintext
RestrictFDs(X_i,F) {
    F_i := ∅
    for all (Y → Z in F)
        if (Y ⊆ X_i)
            W := Closure(Y,F) ∩ X_i
            F_i := F_i ∪ {Y → W}
    return F_i
}
```

(We do not prove the correctness of the algorithm)

Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - BCNF
 - 3NF
 - Note on 4NF

Obtaining Normal Forms

- Let N be a normal form (e.g., 3NF, BCNF)
- An N decomposition of a schema (U,F) is a decomposition (X_1,\ldots,X_k) of (U,F) such that each $X_i F[X_i]$ is in N
- We will discuss 3NF decompositions and BCNF decompositions

Examples

<table>
<thead>
<tr>
<th>3NF decomposition?</th>
<th>BCNF decomposition?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCD</td>
<td>AD</td>
</tr>
<tr>
<td>A → B, B → C, ABC → D, D → B</td>
<td>A → D, B → C, D → B</td>
</tr>
<tr>
<td>ABCD</td>
<td>AD</td>
</tr>
<tr>
<td>A → B, C → B</td>
<td>A → C</td>
</tr>
<tr>
<td>A → C, C → B</td>
<td>A → C</td>
</tr>
<tr>
<td>A → D, B → C, C → D</td>
<td>A → D, B → C, C → D</td>
</tr>
<tr>
<td>ABCD</td>
<td>AD</td>
</tr>
<tr>
<td>A → B, B → C, C → D</td>
<td>A → B, B → C, C → D</td>
</tr>
<tr>
<td>ABCD</td>
<td>AD</td>
</tr>
<tr>
<td>A → B, B → C, C → D</td>
<td>A → B, B → C, C → D</td>
</tr>
</tbody>
</table>

Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - BCNF
 - 3NF
 - Note on 4NF
Good Decomposition?

<table>
<thead>
<tr>
<th>person</th>
<th>building</th>
<th>room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma Taub</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Amir Meyer</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Ahuva Meyer</td>
<td>246</td>
<td></td>
</tr>
</tbody>
</table>

Lossless Decomposition

- Let \(\{X_1, \ldots, X_k\} \) be a decomposition of \((U,F)\).
- We say that \(\{X_1, \ldots, X_k\} \) is a **lossless decomposition** of \((U,F)\) if for all relations \(r \) over \((U,F)\) we have:
 \[
 \pi_{X_1}(r) \Join \cdots \Join \pi_{X_k}(r) = r
 \]
- Containment in one direction always holds:
 \[
 \pi_{X_1}(r) \Join \cdots \Join \pi_{X_k}(r) \supseteq r
 \]
- What about the other direction? Depends on \(F \).

Example 1

<table>
<thead>
<tr>
<th>person</th>
<th>building</th>
<th>room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma Taub</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Amir Meyer</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Ahuva Meyer</td>
<td>246</td>
<td></td>
</tr>
</tbody>
</table>

Example 2

<table>
<thead>
<tr>
<th>person</th>
<th>building</th>
<th>room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma Taub</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Amir Meyer</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Ahuva Meyer</td>
<td>246</td>
<td></td>
</tr>
</tbody>
</table>

Decision Algorithm

Losslessness Testing

Given:
- \(U,F,X_1,\ldots,X_k \)
- \(\{X_1,\ldots,X_k\} \) is a decomposition of \((U,F)\)

Goal:
- Determine whether \(\{X_1,\ldots,X_k\} \) is a lossless decomposition

- The definition of **lossless** is not constructive (check every possible relation)
- Next, we present a polynomial-time algorithm for this decision problem

The Case of Binary Decomposition

THEOREM: Let \(\{X_1,X_2\} \) be a decomposition of \((U,F)\). The following are equivalent:

1. \(F = X_1 \cap X_2 \rightarrow X_1 \) or \(F = X_1 \cap X_2 \rightarrow X_2 \)
2. \(\{X_1,X_2\} \) is a lossless decomposition

So what would be a decision algorithm in this case?

Answer: test whether \(\text{Closure}(F,X_1 \setminus X_2) \) contains either \(X_1 \) or \(X_2 \)
Proof: 1 ⇒ 2

1. $F \rightarrow X_1 \cap X_2 \rightarrow X_1$ or $F \rightarrow X_1 \cap X_2 \rightarrow X_2$
2. $(X_1 X_2)$ is a lossless decomposition

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>$X_1 \cap X_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

We know that this is a subset of r_j for some j.

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>$X_1 \cap X_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Proof: not 1 ⇒ not 2

1. $F \rightarrow X_1 \cap X_2 \rightarrow X_1$ or $F \rightarrow X_1 \cap X_2 \rightarrow X_2$
2. $(X_1 X_2)$ is a lossless decomposition

Let $Y = \{X_1 \cap X_2\}^*$ and suppose that $X_1 \cap Y, X_2 \cap Y$

- Construct a relation $r(1)$ over U
 - $|Y| = |Y| = (0, ..., 0)$
 - $|UY| = (1, ..., 1)$ or $|U \cap Y| = (2, ..., 2)$

Claim 1: $r \equiv F$

- Proof similar to completeness of Armstrong’s axioms

Claim 2: $x_j(1) \equiv x_j(1) \neq r$

- The join contains a row with both 1s and 2s

Illustration: not 1 ⇒ not 2

1. $F \rightarrow X_1 \cap X_2 \rightarrow X_1$ or $F \rightarrow X_1 \cap X_2 \rightarrow X_2$
2. $(X_1 X_2)$ is a lossless decomposition

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>$X_1 \cap X_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

We know that this is a subset of r_j for some j.

The General Case

Losslessness Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U, F, X_1, ..., X_k$</td>
<td>Determine whether (X_1, X_2) is a lossless decomposition</td>
</tr>
</tbody>
</table>

Next, we handle the general case of a decomposition (≥ 2 schemas)

The Idea

We need to prove that t is here!

But some of the x's may be known due to the FDs!

The General Case

Losslessness Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U, F, X_1, ..., X_k$</td>
<td>Determine whether (X_1, X_2) is a lossless decomposition</td>
</tr>
</tbody>
</table>

1st step: create the “known subset”

- A table over U, one tuple t, for each X_j, $t[A] \neq t$ if X_j contains A_j

2nd step: chase

- While the table changes do:
 - Look for an FD violation and equate the conclusions
 - "Equalize" = change every occurrence of one to the other
 - When equating a_j with y_j, change it to A_j

3rd step: Return true iff there is a row of a_j's
Step 1: construct the known subset

Step 2: chase

Step 3: return true

Think

Why is this algorithm terminating in polynomial time?

Answer: Each iteration eliminates one symbol, and we have a polynomial #symbols

Outline

• Introduction
• Normal Forms
 • BCNF
 • 3NF
• Decomposition
 • NF Decompositions
 • Preserving Data
 • Preserving Dependencies
• Decomposition Algorithms
 • BCNF
 • 3NF
 • Note on 4NF

Preserving Dependencies

Is F preserved given that each F_i is preserved in each relation?

Example 1

\(T = \{(x_1, f_1), (x_2, f_2), (x_3, f_3), (x_4, f_4)\} \)

\(r \)

\(r_1 \)

\(r_2 \)

\(r_3 \)

\(r_k \)

\(\{x_1, f_1\} , \{x_2, f_2\} , \{x_3, f_3\} , \{x_4, f_4\} \)

Example 2

\(A \rightarrow B, B \rightarrow C, A \rightarrow D, D \rightarrow B \)

\(\{AD, BD, BC\} \)

Are dependencies preserved in this decomposition?

Answer: Yes!

\(A \rightarrow D, B \rightarrow C, D \rightarrow B \)

\(ABCD \)

\{BC, AC\}

Are dependencies preserved in this decomposition?

Answer: No!

Is there any decomposition into binary schemas where dependencies are preserved?

Answer: No!
Formal Definition

• A decomposition $X_1, ..., X_k$ of (U, F) is dependency preserving if for all relations $r_1, ..., r_k$ over $(X_1, F[X_1]), ..., (X_k, F[X_k])$, respectively, $r_i \vdash r_j$ satisfies F.

• Can we test whether a given decomposition has this property?

Theorem: The following are equivalent:

1. For all $r_1, ..., r_k$ over $(X_1, F[X_1]), ..., (X_k, F[X_k])$, respectively, the join $r_1 \Join ... \Join r_k$ satisfies F.
2. $F^+ = (F_1 \cup ... \cup F_k)$.

Testing for Dependency Preservation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U, F, X_1, ..., X_k$</td>
<td>Determine whether $(X_1, ..., X_k)$ is dependency preserving</td>
</tr>
</tbody>
</table>

```
DepPreserving(X_1, ..., X_k, F) {
  G := ∅
  for (i=1,...,k) {
    G := G \cup RestrictFDs(X_i, F)
  }
  return IsEquiv(G, F)
}
```

Decomposition Algorithms

• Given a normal form N, we ask:
 - Is there always a lossless N decomposition?
 - Is there always a lossless & dependency preserving N decomposition?
 - Is there an efficient decomposition?

• We discuss 2 decomposition algorithms
 - BCNF decomposition
 • Lossless
 - 3NF decomposition
 • Lossless, dependency preserving, p-time

Key Insight

• Recall: BCNF means that in every nontrivial $X \rightarrow Y$, the set X is a superkey.

• CLAIM: If (U, F) is not in BCNF, then there is a lossless decomposition (X_1, X_2) with $X_1, X_2 \subseteq U$.

• Proof:
 - Let $X \rightarrow Y$ be a BCNF violation (X is not a superkey and Y is not a subset of X).
 - Take $X \times x^+ \times U$ and $X \times x^+ U \setminus Y^+$.
 - Why are X_1 and X_2 strict subsets of U?
 - Why lossless?
 • Recall the theorem on binary lossless decompositions ...

Outline

• Introduction
• Normal Forms
 • BCNF
 • 3NF
• Decomposition
 • NF Decompositions
 • Preserving Data
 • Preserving Dependencies
• Decomposition Algorithms
 • BCNF
 • 3NF
 • Note on 4NF

Outline

• Introduction
• Normal Forms
 • BCNF
 • 3NF
• Decomposition
 • NF Decompositions
 • Preserving Data
 • Preserving Dependencies
• Decomposition Algorithms
 • BCNF
 • 3NF
 • Note on 4NF
BCNF Decomposition

BCNFDec(U,F) {
 if ((U,F) in BCNF)
 return (U)
 Find a BCNF violation X → Y
 X₁ := Closure(X,Y)
 F₁ := RestrictFDs(X₁,F)
 X₂ := X \ U(F\{X\})
 F₂ := RestrictFDs(X₂,F)
 return BCNFDec(X₁,F₁) U BCNFDec(X₂,F₂)
}

Execution Example

BCNFD = \{AD, BD, BC\}

About the Algorithm

• **Lossless**
 – Proof idea: every step is lossless
• **Exponential time** in the worst case
• There is a polynomial-time algorithm for BCNF decomposition
 – [Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, 1982]
• The algorithm does **not preserve dependencies**!
 – But the problem is not with the algorithm...

Can Dependencies be Preserved?

ABC

AB → C C → B

No BCNF decomposition of this schema preserves both dependencies (why?)

Conclusion: Lossless BCNF decomposition is always possible; lossless & dependency-preserving BCNF decomposition may be impossible

Outline

• Introduction
• Normal Forms
 • BCNF
 • 3NF
• Decomposition
 • NF Decompositions
 • Preserving Data
 • Preserving Dependencies
• Decomposition Algorithms
 • BCNF
 • 3NF
 • Note on 4NF

Algorithm for 3NF Decomposition

• We next describe an algorithm for 3ND decomposition
• First, some intuition
Intuition

Idea: for dependency preservation, each $X \rightarrow A$ becomes a schema

$F = \{ A \rightarrow B, AB \rightarrow C, C \rightarrow B, D \rightarrow C \}$

Problem: not in 3NF
Solution: minimal cover instead of F

Reminder: Minimal Cover

• Let F be a set of FDs
• A minimal cover of F is a set G of FDs with the following properties:
 – $G^* = F^*$
 – FDs in G have a single attribute on the right hand side; that is, they have the form $X \rightarrow A$
 – All FDs are required: no FD $X \rightarrow A$ in G is such that $G \setminus \{ X \rightarrow A \} \not\models X \rightarrow A$
 – All attributes are required: no FD $XB \rightarrow A$ in G is such that $G \models X \rightarrow A$

Algorithm for 3NF Decomposition

3NFDec(U, F)

1. $D = \emptyset$
2. $G := \text{MinCover}(F)$
3. for all $(X \rightarrow A)$ in G
4. 2. $D := D \cup \{ XA \}$
5. if (no set in D is a superkey)
6. 3. $D := D \cup \{ \text{FindKey}(U, F) \}$
7. $D := \text{RemoveConained}(D)$
8. return D

No need for schemas contained in others

Revised Example

\{ $A \rightarrow B, AB \rightarrow C, C \rightarrow B, D \rightarrow C$ \}

$F = \{ A \rightarrow B, AB \rightarrow C, C \rightarrow B, D \rightarrow C \}$

Problem: lossy
Solution: add a key

About the Proof

• We will not prove the correctness here
• Still, what needs to be proved?
 – Resulting schemas are all in 3NF
 – Follows from minimality of the cover
 – Dependencies are preserved
 • Straightforward: all dependencies of the minimal cover are presented
 – Lossless
 • What would the lossless-testing algorithm do when one X_i is a key and dependencies are preserved?

Example Revisited
Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - BCNF
 - 3NF
 - Note on 4NF

Fourth Normal Form (4NF)

- Recall: An MVD has the form X → Y where X and Y are disjoint sets of attributes
 - For every two tuples that agree on X, swapping their Y component doesn’t change the relation
- Recall: An MVD X → Y is trivial (always holds) if and only if Y = ∅ or Y = U \ X
- Recall: an FD X → Y can be viewed as a special type of the MVD X → Y (why?)
- A schema (U, F), where F contains both FDs and MVDs, is in 4NF if every nontrivial FD/MVD has a superkey in its premise (lhs)
 - When all dependencies are FDs, same as BCNF

4NF Decomposition

- THEOREM: Let (U, f) be a schema, where F contains both FDs and MVDs. Then F satisfies X → Y iff for all relations r over U we have:
 \[r = \pi_X \cup \pi_Y(r) \times \pi_X \cup (U \setminus Y)(r) \]
- Hence, the recursive decomposition algorithm for BCNF decomposition works here
 - Decompose(X \ U) \ U Decompose((X \ U)(Y))
 - A polynomial time is known for special cases
- In particular, there is always a lossless 4NF decomposition
 - What about dependency preserving?
 - Answer: No! Even if there are only FDs (recall BCNF)