Database Management Systems

Course 236363

Lecture 6:
Integrity Constraints
Database Constraints (Dependencies)

• Definition: properties that DB instances should satisfy beyond conforming to the schema structure

• There are various types of constraints, each with its designated
 – Language (how do rules look like?)
 – Semantics (what do rules mean?)

• In this lecture, we will learn constraint languages, discuss their semantics and discuss reasoning over them
Why is it important to model and understand constraints?

- Application coherence/safety
- Efficiency
- Inconsistency management
 - Advanced course 236605
- Principles of schema design
 - Next lecture
Use 1: Constraints for Application Coherence

• The “obvious” application of constraints is software safety: DBMS assures that, whatever app developers/users do, DB always satisfies specified constraints.

• Database constraints reduce (but typically not eliminate) responsibility of custom code to verify integrity.
Use 2: Constraints for Efficiency

- Knowing that constraints are satisfied can significantly help query planning.

- In addition, joins are commonly via keys; so designated structure/indices can be built.
Use 3: Constraints for Handling Inconsistency

• An *inconsistent database* contains inconsistent (or impossible) information
 – Two students have the same ID
 – A student gets credit for the same course twice
 – A student takes a non-existing course
 – A student gets a grade but missing an assignment

• Modeling: \((I, \Sigma)\) where \(I\) is a database instance and \(\Sigma\) is a set of *integrity constraints*; alas, \(I\) violates \(\Sigma\)

• (Slides from “Uncertainty in Databases,” Advanced Topics 236605)
Consistent Query Answering

Database D

Functional Dependency:
every student gets a unique grade per course

Integrity Constraints Σ

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>

SELECT student
FROM Grades G, Courses C
WHERE G.grade \geq 85 AND G.course = C.course AND C.lecturer='Eran'

Ahuva

Alon
Consistent Query Answering

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Database D

Functional Dependency:

every student gets a unique grade per course

Integrity Constraints Σ

```
SELECT student
FROM Grades G, Courses C
WHERE G.grade >= 87 AND
  G.course = C.course AND
  C.lecturer = 'Eran'
```

- **Ahuva**
- **Alon**
Consistent Query Answering

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Database D

Functional Dependency:
Every student gets a unique grade per course

Integrity Constraints Σ

SELECT student
FROM Grades G, Courses C
WHERE G.grade >= 80 AND G.course = C.course AND C.lecturer='Eran'

Ahuva
Alon
Interestingly, the motivation to inventing some popular types of constraints was to define what “good schemas” should avoid!
Example of Schema Design

<table>
<thead>
<tr>
<th>country</th>
<th>host</th>
<th>city</th>
<th>cityPopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Alma</td>
<td>PL</td>
<td>2</td>
</tr>
<tr>
<td>Avia</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Amir</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Amir</td>
<td>PL</td>
<td>2</td>
</tr>
</tbody>
</table>

Population repeated for every city! *Why is it bad?*
- Redundancy – we store more bits than needed
- We can get inconsistencies
- We may not be able to store some information (or be forced to used nulls)
Normal Forms

Embassy

<table>
<thead>
<tr>
<th>country</th>
<th>host</th>
<th>city</th>
<th>cityPopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
</tbody>
</table>

Not in “normal form”

<table>
<thead>
<tr>
<th>CountryCity</th>
<th>CityPopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>country</td>
<td>city</td>
</tr>
<tr>
<td>Israel</td>
<td>Tel Aviv</td>
</tr>
<tr>
<td>France</td>
<td>Paris</td>
</tr>
<tr>
<td>USA</td>
<td>NYC</td>
</tr>
<tr>
<td>UK</td>
<td>London</td>
</tr>
</tbody>
</table>

In some “formal form”

<table>
<thead>
<tr>
<th>Embassy</th>
</tr>
</thead>
<tbody>
<tr>
<td>country</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>USA</td>
</tr>
<tr>
<td>Israel</td>
</tr>
<tr>
<td>USA</td>
</tr>
</tbody>
</table>

In “formal form”?

<table>
<thead>
<tr>
<th>Embassy</th>
</tr>
</thead>
<tbody>
<tr>
<td>country</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>USA</td>
</tr>
<tr>
<td>Israel</td>
</tr>
<tr>
<td>USA</td>
</tr>
</tbody>
</table>
Another Bad Schema

<table>
<thead>
<tr>
<th>student</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>054-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>
Outline

• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies

• Anti-Monotonicity
Functional Dependencies (FDs)

• *Functional Dependency* is the most studied type of database constraint

• Most famous special case: *keys*
 – SQL distinguishes between two types of key constraints: primary key (\(\leq 1\) allowed), and uniqueness (as many as you want)
 • A primary key cannot be NULL, and it typically has a more efficient index (determines tuple physical sorting)
Example: Smartphone Store

Smartphone

<table>
<thead>
<tr>
<th>name</th>
<th>os</th>
<th>disk</th>
<th>price</th>
<th>vendor</th>
<th>headq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy S6</td>
<td>Android</td>
<td>32</td>
<td>550</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>Galaxy S6</td>
<td>Android</td>
<td>64</td>
<td>700</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>Galaxy Note 5</td>
<td>Android</td>
<td>32</td>
<td>630</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>iPhone 6</td>
<td>iOS</td>
<td>16</td>
<td>595</td>
<td>Apple</td>
<td>Cupertino, CA, USA</td>
</tr>
<tr>
<td>iPhone 6</td>
<td>iOS</td>
<td>128</td>
<td>700</td>
<td>Apple</td>
<td>Cupertino, CA, USA</td>
</tr>
<tr>
<td>Nexus 6p</td>
<td>Android</td>
<td>32</td>
<td>635</td>
<td>Google</td>
<td>MV, CA, USA</td>
</tr>
<tr>
<td>Nexus 6p</td>
<td>Android</td>
<td>128</td>
<td>900</td>
<td>Google</td>
<td>MV, CA, USA</td>
</tr>
</tbody>
</table>

The attribute set determines the attribute.

- **name** determines **os**, **price**, **vendor**, **headq**
- **disk** determines **os**, **price**, **vendor**, **headq**
- **os** determines **vendor**, **headq**
- **price** determines **vendor**, **headq**
- **vendor** determines **headq**
Example: US Addresses

<table>
<thead>
<tr>
<th>name</th>
<th>state</th>
<th>city</th>
<th>street</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>White House</td>
<td>DC</td>
<td>Washington</td>
<td>1600 Pennsylvania Ave NW</td>
<td>20500</td>
</tr>
<tr>
<td>Wall Street</td>
<td>NY</td>
<td>New York</td>
<td>11 Wall St.</td>
<td>10005</td>
</tr>
<tr>
<td>Empire State B.</td>
<td>NY</td>
<td>New York</td>
<td>350 Fifth Avenue</td>
<td>10118</td>
</tr>
<tr>
<td>Hollywood Sign</td>
<td>CA</td>
<td>Los Angeles</td>
<td>4059 Mt Lee Dr.</td>
<td>90068</td>
</tr>
</tbody>
</table>

The attribute set determines the attribute.

- **state**
- **city**
- **street**
- **zip**

The attribute set determines the attribute.

- **zip**
- **state**
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Notation

- In the case of FDs, we restrict to a single relation schema

- We write an attribute set as a sequence of attribute names (not set notation {...})
 - name, os, disk, price

- An attribute set is denoted by a capital letter from the end of the Latin alphabet
 - X, Y, Z

- Concatenation stands for union
 - XY stands for X U Y
 - XX = X
 - XY = YX = YYXX
Functional Dependency

• From now on, we will assume the schema s without mentioning it explicitly.

• A Functional Dependency (FD) is an expression $X \rightarrow Y$ where X and Y are sets of attributes.

 – Examples:

 • $\text{name, disk} \rightarrow \text{price, os, vendor}$
 • $\text{name} \rightarrow \text{os, vendor}$
 • $\text{country, city, street} \rightarrow \text{zip}$
 • $\text{zip} \rightarrow \text{country}$
Semantics of an FD

• A relation R satisfies the FD $X \rightarrow Y$ if:
 for all tuples t and u in R, if t and u agree on X then they also agree on Y

• Mathematically:
 \[t[X] = u[X] \implies t[Y] = u[Y] \]

• A relation R satisfies a set F of FDs if R satisfies every FD in F
Trivial FDs

• An FD over is *trivial* if it holds in every relation (over the underlying schema)

• **Proposition:** An FD $X \rightarrow Y$ is trivial if and only if $Y \subseteq X$

 – Proof:

 • The “if” direction is straightforward
 • For the “only if” direction, consider the instance I that contains two tuples that agree precisely on the attributes of X; if $Y \not\subseteq X$ then we get a violation of $X \rightarrow Y$
Can you express an FD stating that a column must contain a constant value (same across all tuples)?

<table>
<thead>
<tr>
<th>faculty</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>AI</td>
</tr>
<tr>
<td>CS</td>
<td>DB</td>
</tr>
<tr>
<td>CS</td>
<td>PL</td>
</tr>
<tr>
<td>CS</td>
<td>OS</td>
</tr>
</tbody>
</table>

Answer: yes! \(\emptyset \rightarrow \text{faculty} \)
Problem: No Unique Representation...

<table>
<thead>
<tr>
<th>symbol</th>
<th>name</th>
<th>dean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Computer Science</td>
<td>Irad Yavneh</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
<td>Ariel Orda</td>
</tr>
<tr>
<td>IE</td>
<td>Industrial Engineering</td>
<td>Avishai Mandelbaum</td>
</tr>
</tbody>
</table>

- $F_1 = \{\text{symbol} \rightarrow \text{name,dean}, \text{name} \rightarrow \text{symbol,dean}, \text{dean} \rightarrow \text{name,symbol}\}$
- $F_2 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{dean}, \text{dean} \rightarrow \text{symbol}\}$
- $F_3 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{symbol}, \text{dean} \rightarrow \text{symbol}, \text{symbol} \rightarrow \text{dean}\}$

They all mean precisely the same thing!
Entailed (Implied) FDs

• Let F be a set of FDs
• An FD $X \rightarrow Y$ is *entailed* (or *implied*) by F if for every relation R over the schema, if R satisfies F then R satisfies $X \rightarrow Y$
• Notation: $F \models X \rightarrow Y$
Examples of Entailment

• F = \{name\rightarrow vendor,vendor\rightarrow headq\}
 – F \models name\rightarrow headq
 – F \models name,vendor\rightarrow headq
 – F \models name,vendor\rightarrow vendor

• F = \{A\rightarrow B, B\rightarrow C, C\rightarrow A\}
 – F \models A\rightarrow A
 – F \models A\rightarrow B
 – F \models A\rightarrow C
 – F \models A\rightarrow ABC
Closure of an FD Set

• Let F be a set of FDs
• The *closure* of F, denoted F^+, is the set of all the FDs entailed by F
• Observations:
 – $F \subseteq F^+$
 – $(F^+)^+ = F^+$
 – F^+ contains every trivial FD
Closure of an Attribute Set

- Let F be a set of FDs, and let X be a set of attributes.
- The *closure* of X under F, denoted X^+, is the set of all the attributes A such that $X \rightarrow A$ is implied by F.
 - Note: notation assumes that F is known from the context.
For all F, X, Y:

- $X^+ = \{ A \mid F \models X \rightarrow A \} = \{ A \mid (X \rightarrow A) \in F^+ \}$
- $X \subseteq X^+$
- $(X^+)^+ = X^+$
- If $X \subseteq Y$ then $X^+ \subseteq Y^+$
Minimal Cover

• Let F be a set of FDs
• A *minimal cover* (or *minimal basis*) for F is a set G of FDs with the following properties:

 – $G^+ = F^+$

 – FDs in G have a single attribute on the right hand side; that is, they have the form $X \rightarrow A$

 – All FDs are required: no FD $X \rightarrow A$ in G is such that $G \setminus \{X \rightarrow A\} \not\models X \rightarrow A$

 – All attributes are required: no FD $XB \rightarrow A$ in G is such that $G \not\models X \rightarrow A$
Example of Minimal Covers

\{A \rightarrow BC, B \rightarrow AC, C \rightarrow AB, AB \rightarrow C, AC \rightarrow B\}

• Minimal cover 1:
 \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}

• Minimal cover 2:
 \{C \rightarrow B, B \rightarrow A, A \rightarrow C\}

• Minimal cover 3:
 \{A \rightarrow B, B \rightarrow A, A \rightarrow C, C \rightarrow A\}

• Any more?
• In what sense is a minimal cover “minimal”?
Keys and Superkeys

• Assume s is our underlying relation schema

• A **superkey** is a set X of attributes such that X^+ contains every attribute in s

• A **key** is a superkey X that does not contain any other superkey
 – That is, if $Y \subseteq X$ then Y is not a superkey

• Later, we will see an efficient algorithm for finding a key
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
• Conceptually, to prove $F \models X \rightarrow Y$ we need to consider every possible relation that satisfies F, and check whether $X \rightarrow Y$ holds

• But so far, for each such a proof we have found a finite argument

• *Can we detect entailment algorithmically?*

• Yes! Using a *proof system*
 – Later, we will see an efficient (not just computable) proof procedure
Proof System

• A *proof system* is a collection of rules/patterns of the form “if you know x then infer y”

• A *proof* of a statement `stmt` is a sequence of rule applications (each adding new facts), starting with what is known and ending with `stmt`

• A proof system is:
 – *Sound* if every provable fact is correct
 – *Complete* if every correct fact is provable
• Think of proof systems for inferring FDs from a known set of FDs... ("if you know some FDs, then you can infer a new FD")
 – Can you give easy example of a sound (not necessarily complete) proof system?
 – Can you give an easy example of a complete (not necessarily sound) proof system?
Armstrong’s Axioms

Reflexivity: If $Y \subseteq X$ then $X \rightarrow Y$

Augmentation: If $X \rightarrow Y$ then $XZ \rightarrow YZ$

Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
Provable Rules

Armstrong’s Axioms

- Reflexivity: If \(Y \subseteq X \) then \(X \rightarrow Y \)
- Augmentation: If \(X \rightarrow Y \) then \(XZ \rightarrow YZ \)
- Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)

• Union: If \(X \rightarrow Y \) and \(X \rightarrow Z \) then \(X \rightarrow YZ \)
 - \(XZ \rightarrow YZ \) (augmentation)
 - \(X \rightarrow X \) (reflexivity)
 - \(XX \rightarrow XZ \) (augmentation); same as \(X \rightarrow XZ \)
 - \(X \rightarrow YZ \) (transitivity)

• Decomposition: If \(X \rightarrow YZ \) then \(X \rightarrow Y \)
Entailment vs. Provable

• Recall: $F \models X \rightarrow Y$ denotes that $X \rightarrow Y$ is entailed from F

• By $F \vdash X \rightarrow Y$ we denote that $X \rightarrow Y$ is provable from F using Armstrong's axioms

• Example: $F = \{A \rightarrow B, BC \rightarrow D\}$
 – Clearly, $F \models AC \rightarrow D$ is true
 – But is $F \vdash AC \rightarrow D$ true?
 • *If so, a proof is required*
Soundness and Completeness

THEOREM: Armstrong’s axioms form a sound and complete proof system for FDs

- That is, every provable FD is correct, and every correct FD is provable
- That is, for all F, X, Y we have
 $$ F \models X \rightarrow Y \iff F \vdash X \rightarrow Y $$
- Hence, Armstrong’s axioms fully capture the implication dependencies among FDs
We need to prove two things:

1. **Soundness**
2. **Completeness**

Proving *soundness* is straightforward: the axioms are correct, so derived facts are correct, ...so end conclusions are correct

Proving *completeness* is more involved
Proof of Completeness (1)

• We assume that $F \models X \rightarrow Y$
• We need to prove that $F \vdash X \rightarrow Y$

• Strategy:
 – Denote by X^+ the set $\{A \mid F \models X \rightarrow A\}$
 – We will show that $Y \subseteq X^+$
 – Then $X \rightarrow Y$ is proved by repeatedly using union
 • Recall – we showed that union is provable
 – ... and we are done
Proof of Completeness (1)

- We assume that \(F \models X \rightarrow Y \)
- We need to prove that \(Y \subseteq X^\dagger = \{ A \mid F \vdash X \rightarrow A \} \)
- Let \(X^c \) be the set of attributes that are not in \(X^\dagger \)
- Construct a relation \(R \) with two tuples \(t \) and \(u \):
 - \(t[X^\dagger] = u[X^\dagger] = (0,...,0) \)
 - \(t[X^c] = (1,...,1) \)
 - \(u[X^c] = (2,...,2) \)

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>u</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Proof of Completeness (2)

- **Claim 1:** $X \subseteq X^\dagger$

 - Proof: apply reflexivity to each $A \in X$

\[
\begin{array}{cccccc}
A_1 & A_2 & A_3 & A_4 & A_5 & A_6 & A_7 \\
\hline
t & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
u & 0 & 0 & 0 & 0 & 2 & 2 & 2 \\
\end{array}
\]
Proof of Completeness (3)

• Suppose, by way of contradiction, that $Y \not\subseteq X^+$

• **Claim 2:** R violates $X \rightarrow Y$

 – Proof:

 • t and s agree on X, due to **Claim 1**

 • t and s disagree on Y, since $Y \cap X^c \neq \emptyset$
• **Claim 3:** \(R \) satisfies \(F \)

 – Proof:

 • Let \(Z \rightarrow W \) be an FD in \(F \); we need to prove that \(R \) satisfies \(Z \rightarrow W \).

 • If \(Z \not\subseteq X^t \) then \(s \) and \(t \) disagree on \(Z \), and we are done; so suppose that \(Z \subseteq X^t \).

 • Then \(F \vdash X \rightarrow Z \) (union), hence \(F \vdash X \rightarrow W \) (transitivity), hence \(F \vdash X \rightarrow A \) for every \(A \in W \) (reflexivity and transitivity).

 • We conclude that \(W \subseteq X^t \).

 • Hence, \(s \) and \(t \) agree on \(W \), and \(R \) satisfies \(Z \rightarrow W \).
• Recall: we assumed that $F \models X \rightarrow Y$

• We have so far:
 – **Claim 2**: R violates $X \rightarrow Y$
 – **Claim 3**: R satisfies F

• This is a contradiction to $F \models X \rightarrow Y$

• As required \Box
• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies

• Anti-Monotonicity
Computational Problems

Closure Computation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A set F of FDs</td>
<td>Compute X^+</td>
</tr>
<tr>
<td>A set X of attributes</td>
<td></td>
</tr>
</tbody>
</table>

Entailment Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A set F of FDs</td>
<td>Determine whether $F \models X \rightarrow Y$</td>
</tr>
<tr>
<td>An FD $X \rightarrow Y$</td>
<td></td>
</tr>
</tbody>
</table>

Key Generation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A set F of FDs</td>
<td>Find a key</td>
</tr>
</tbody>
</table>

Equivalence Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets F and G of FDs</td>
<td>Determine whether $F^+ = G^+$</td>
</tr>
</tbody>
</table>
Computing the Closure of an Attribute Set

Closure*(X,F) {**

V := X

while(V changes) {
 for all (Y⟶Z in F) {
 if (Y ⊆ V)
 V := V ∪ Z
 }
} return V
}**

Example:
F={AB⟶C, A⟶B, BC⟶D, CE⟶F}
X={A}

<table>
<thead>
<tr>
<th>Y⟶Z</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB⟶C</td>
<td>{A}</td>
</tr>
<tr>
<td>A⟶B</td>
<td>{A,B}</td>
</tr>
<tr>
<td>BC⟶D</td>
<td>{A,B}</td>
</tr>
<tr>
<td>CE⟶F</td>
<td>{A,B}</td>
</tr>
<tr>
<td>AB⟶C</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>BC⟶D</td>
<td>{A,B,C,D}</td>
</tr>
<tr>
<td>CE⟶F</td>
<td>{A,B,C,D}</td>
</tr>
</tbody>
</table>

{A,B,C,D}
Correctness and Running Time

- The proof of correctness is very similar to the proof of soundness & completeness of Armstrong’s axioms (omitted)
- Running time:
 - Suppose that \(R \) contains \(n \) attributes
 - Let \(m \) be the total # of attribute occurrences in \(F \)
 - With reasonable data structures, \(O(nm) \) time
 - Can be improved to run in time \(O(|X|+m) \)
 - [Beeri & Bernstein, 1979]
Implication Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A set F of FDs</td>
<td>Determine whether $F \vdash X \rightarrow Y$</td>
</tr>
<tr>
<td>• An FD $X \rightarrow Y$</td>
<td></td>
</tr>
</tbody>
</table>

```python
IsImplied(X, Y, F) { 
    if ($Y \subseteq \text{Closure}(X, F)$) return true
    else return false
}
```
Equivalence Testing

Given:

• Sets F and G of FDs

Goal:

Determine whether F⁺=G⁺

```
IsEquiv(F, G) {
    for all X→Y in F
        if (!IsImplied(X, Y, G)) return false
    for all X⇒Y in G
        if (!IsImplied(X, Y, F)) return false
    return true
}
```
Key Generation

Given: A set F of FDs
Goal: Find a key

FindKey($F, R(A_1, ..., A_n)$) {

K = $\{A_1, ..., A_n\}$

for (i = 1, ..., n) {

if ($A_i \in \text{Closure}(K\{A_i\}, F)$)

K := K\{A_i\}

}

return K

}

Example:

R(A,B,C)
F={B→A, AB→C}

<table>
<thead>
<tr>
<th>K</th>
<th>A_i</th>
<th>K\A_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,B,C</td>
<td>A</td>
<td>B,C</td>
</tr>
<tr>
<td>B,C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B,C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

{B}
Proof of Correctness (1)

- **Claim 1**: Throughout the execution, \(K \) is always a superkey
 - Proof: Induction on iteration #
 - Basis: Initial \(K \) contains all attributes
 - Inductive step: If \(A_i \in (K\{A_i\})^+ \) then
 \[
 K \subseteq (K\{A_i\})^+
 \]
 and then
 \[
 \{A_1, \ldots, A_n\} = K^+ \subseteq ((K\{A_i\})^+)^+ = (K\{A_i\})^+
 \]
Proof of Correctness (2)

• Let Q be the returned K

• **Claim 2:** Q is minimal

 – Proof: by way of contradiction

 • Suppose that $Q' \subsetneq Q$ is a superkey, and let $A_i \in Q \setminus Q'$

 • Then $Q \setminus \{A_i\}$ is a superkey (why?)

 • Consider the i'th iteration: we have $Q \subseteq K$ (since we only delete things from K), and so, $Q \setminus \{A_i\} \subseteq K \setminus \{A_i\}$

 • But then, $Q \setminus \{A_i\}$ is a superkey, and so $K \setminus \{A_i\}$ is a superkey, and in particular $A_i \in (K \setminus \{A_i\})^+$

 • So A_i should have been removed!
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Additional Types of Constraints

- So far we have been looking at functional dependencies, and the special cases of superkeys and keys.
- Next, we consider two additional types:
 - Multivalued Dependency (MVD)
 - Inclusion Dependency (IND)
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Example of Multivalued Dependency

<table>
<thead>
<tr>
<th>student</th>
<th>faculty</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>054-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>

Why is this table “badly” designed?

Are there any FDs?

- `student → faculty`
- `student → phone`
- `student → course, lecturer`
Multivalued Dependency

- Let s be a relation schema.
- A *multivalued dependency* (MVD) has the form $X \rightarrow Y$ where X and Y are *disjoint* sets of attributes.
- A relation R satisfies $X \rightarrow Y$ if
 - Informally: for every two tuples that agree on X, swapping their Y component doesn't change R.
 - For every tuples t_1 and t_2 with $t_1[X] = t_2[X]$ there exists a tuple t_3 with
 - $t_3[X] = t_1[X] = t_2[X]$
 - $t_3[s\setminus(XY)] = t_1[s\setminus(XY)]$
 - $t_3[Y] = t_2[Y]$
Any Other MVDs?

<table>
<thead>
<tr>
<th>student</th>
<th>faculty</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>054-333-333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>

student ➞ phone
student ➞ course, lecturer
Some Properties (Exercise / Assignment)

- $X \rightarrow Y$ implies $X \rightarrow Y$
- If $X \rightarrow Y$ then $X \rightarrow s \setminus (XY)$
- An MVD $X \rightarrow Y$ is *trivial* (always holds) if and only if $Y = \emptyset$ or $Y = s \setminus X$
- If X, Y, Z are pairwise disjoint, then $X \rightarrow Y$ and $Y \rightarrow Z$ imply $X \rightarrow Z$
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Example of Inclusion Dependencies

Student

<table>
<thead>
<tr>
<th>name</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
</tr>
<tr>
<td>Amir</td>
<td>CS</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
</tr>
</tbody>
</table>

Posting

<table>
<thead>
<tr>
<th>id</th>
<th>owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Alma</td>
</tr>
<tr>
<td>45</td>
<td>Amir</td>
</tr>
<tr>
<td>76</td>
<td>Ahuva</td>
</tr>
<tr>
<td>79</td>
<td>Ahuva</td>
</tr>
</tbody>
</table>

Likes

<table>
<thead>
<tr>
<th>student</th>
<th>posting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>45</td>
</tr>
<tr>
<td>Alma</td>
<td>76</td>
</tr>
<tr>
<td>Ahuva</td>
<td>23</td>
</tr>
<tr>
<td>Amir</td>
<td>76</td>
</tr>
</tbody>
</table>

\[\text{Likes}[\text{student}] \subseteq \text{Student}[\text{name}] \]
\[\text{Likes}[\text{posting}] \subseteq \text{Posting}[\text{id}] \]
\[\text{Posting}[\text{owner}] \subseteq \text{Student}[\text{name}] \]

Grad

<table>
<thead>
<tr>
<th>name</th>
<th>faculty</th>
<th>advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>Anna</td>
</tr>
<tr>
<td>Amir</td>
<td>CS</td>
<td>Anna</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>Ahmed</td>
</tr>
</tbody>
</table>

StudentGrant

<table>
<thead>
<tr>
<th>prof</th>
<th>student</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna</td>
<td>Amir</td>
<td>1000</td>
</tr>
<tr>
<td>Ahmed</td>
<td>Ahuva</td>
<td>1500</td>
</tr>
</tbody>
</table>

\[\text{StudentGrant}[\text{prof,student}] \subseteq \text{Grad}[\text{advisor,name}] \]

A prof. receives a grant for a student only if she advises that student.
Definition of an Inclusion Constraint

• Let S be a relational schema
 – Recall: S consists of several relation schemas

• An *Inclusion Dependency* (IND) has the following form $R[A_1,\ldots,A_m] \subseteq S[B_1,\ldots,B_m]$ where:
 – R and S are relation names in S
 – A_1,\ldots,A_m are distinct attributes of R
 – B_1,\ldots,B_m are distinct attributes of S

• Semantics: $\pi_{A_1,\ldots,A_m}(R) \subseteq \pi_{B_1,\ldots,B_m}(S)$
Examples

• What is the meaning of the following IND?
 Grad[name] ⊆ StudentGrant[student]

• What does the following mean about the binary relation $R(A,B)$:

 $R[A,B] \subseteq R[B,A]$
Like FDs, INDs have a simple sound and complete proof system (proof uncovered):

- **Reflexivity:** $R[X] \subseteq R[X]$

- **Projection:** If $R[A_1,\ldots,A_m] \subseteq S[B_1,\ldots,B_m]$ then for every sequence i_1,\ldots,i_k of distinct indices in $\{1,\ldots,m\}$ we have $R[A_{i_1},\ldots,A_{i_k}] \subseteq S[B_{i_1},\ldots,B_{i_k}]$

- **Transitivity:** If $R[X] \subseteq S[Y]$ and $S[X] \subseteq T[Z]$ then $R[X] \subseteq T[Z]
Outline

• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies

• Anti-Monotonicity
Anti-Monotonic Constraints

• Let S be a database schema

• Recall: $I \subseteq J$ if for every relation name, the corresponding relation in I is a subset of the corresponding relation in J

• A constraint C (over S) is *monotonic* if for all instances I and J where $I \subseteq J$, if I satisfies C then J satisfies C

• A constraint C is *anti-monotonic* if for all instances I and J where $I \subseteq J$, if J satisfies C then I satisfies C
Which is Monotonic? Anti-Monotonic?

- An FD: No / Yes
- An MVD: No / No
- An IND: No / No