The Relational Model

- A conceptual model for representing data, integrity constraints, and queries
- All based on the notion of a schema
- DBMS is responsible for translating specifications into the physical environment at hand
 - Storage in files, caches, indexes
 - Queries translated to query plans (high-level imperative programs)
 - Query plans translated to low-level execution over stored data

The Relational Algebra (RA)

- Mathematical query language
- Introduced by Edgar Codd
- Since invention, developed and studied by Codd and many others

Outline

- Background
 - The Primitive Operators
 - Implied Operators
 - Joins
 - Division
 - Equivalence & Independence
 - Taste of Query Optimization

Querying: Which Courses Avia Took?

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>addr</th>
<th>number</th>
<th>topic</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>Avia</td>
<td>Halls</td>
<td>363</td>
<td>DB</td>
<td>95</td>
</tr>
<tr>
<td>1395</td>
<td>Boris</td>
<td>Venue</td>
<td>319</td>
<td>PL</td>
<td>82</td>
</tr>
</tbody>
</table>

Assembly

```assembly
SELECT c.name FROM S,c,t WHERE c.name = 'Avia' AND S.ID = C.ID AND t.chi = C.number
```

Logic (RC)

- Logic Programming (Datalog)
 - `∀x χ(x,x,Avia),(x,y,Avia)`
 - `∃x χ(x,y,Avia)`
 - `∀x χ(x,y,Avia) ∧ t.chi = t.number`

Logic Programming (Datalog)

- `χ(x,y,Avia)`
 - `∀x χ(x,x,Avia)`
 - `∃x χ(x,y,Avia)`

RA Example

Names of students who study DB:

- `∀x χ(x,y,Avia)`
 - `∀x χ(x,x,Avia)`
 - `∃x χ(x,y,Avia)`

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Avia</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>alma</td>
<td>2</td>
</tr>
<tr>
<td>861</td>
<td>PL</td>
<td>23</td>
</tr>
<tr>
<td>753</td>
<td>DB</td>
<td>45</td>
</tr>
<tr>
<td>753</td>
<td>CS</td>
<td>76</td>
</tr>
<tr>
<td>955</td>
<td>CS</td>
<td>76</td>
</tr>
</tbody>
</table>
Why RA?

- Understanding the relational algebra is a key understanding central concepts in databases: SQL, query evaluation, query optimization
- Tool for building theoretical foundations of various query languages (e.g., SQL)
- Tool for developing novel data/query models

RA vs Other QLs

- Some subtle (yet important) differences between RA and other languages
 - Can tables have duplicate records?
 - (RA vs. SQL)
 - Are missing (NULL) values allowed?
 - (RA vs. SQL)
 - Is there any order among records?
 - (RA vs. SQL)
 - Is the answer dependent on the domain from which values are taken (not just the DB)?
 - (RA vs. RC)

Relation Schema

- A relation schema is a finite sequence of distinct attribute names att with a mapping of each to a domain dom of legal values
- Notation: (att1:dom1, ..., attk:domk)
 - Example: (sid:int, name:string, year:int)

Tuples

- Let s be a relation schema (att1:dom1, ..., attk:domk)
- A tuple (over s) is a sequence (v1, ..., vk) of values vᵢ, where each vᵢ is in domᵢ
 - That is, a tuple is an element of dom₁ × ... × domₖ

Relations

- A relation R is a pair (s, r)
 - s is a relation schema
 - Called the header of R
 - r is a finite set r of tuples over s

Ignoring Domains

- In this lecture we ignore the attribute domains, since they play no special role
 - (Well, almost; they make a difference for query equivalence, but we do not get there...)
- For example, we will write (sid, name, year) instead of (sid:int, name:string, year:int)
Notation

- **Notation 1:**
 - Let R be a relation with the header (a_1, \ldots, a_k)
 - Let $t = (v_1, \ldots, v_k)$ be a tuple in R
 - We refer to v_i by $t.a_i$

- **Notation 2:**
 - Let a_1, \ldots, a_m be attributes in (a_1, \ldots, a_k)
 - We denote by $t[a_1, \ldots, a_m]$ the tuple $(t.a_1, \ldots, t.a_m)$

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

Databases

- A database schema is a finite set of relation names, each mapped into a relation schema
 - Example: Student(sid, name, year), Course(cid, topic), Studies(sid, cid)
- A (database) instance over a schema consists of a relation for each relation schema

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>name</td>
<td>year</td>
</tr>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>76</td>
<td>OS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>cid</th>
<th>sid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>23</td>
<td>861</td>
<td>PL</td>
</tr>
<tr>
<td>753</td>
<td>45</td>
<td>753</td>
<td>DB</td>
</tr>
<tr>
<td>955</td>
<td>76</td>
<td>955</td>
<td>OS</td>
</tr>
</tbody>
</table>

What is “Algebra”?

- An abstract algebra consists of:
 - A class of elements
 - A collection of operators
- Each operator:
 - Has an arity d
 - Has a domain of sequences (e_1, \ldots, e_d) of elements
 - Maps every sequence in its domain to an element e
- The definition of an operator allows for composition: $o(e_1, e_2, \ldots, e_d) = e$
- Examples:
 - Ring of integers: $(\mathbb{Z}, +, \cdot)$
 - Boolean algebra: $(\{true, false\}, \&, \|, \neg)$
- Relational algebra

The Relational Algebra

- In the relational algebra (RA) the elements are relations
 - Recall: pairs (u, v)
- RA has 6 primitive operators:
 - Unary: projection, selection, renaming
 - Binary: union, difference, Cartesian product
- Each of the six is essential (independent)—we cannot define it using the others
 - We will see what exactly this means and how this can be proved
- In practice, we allow many more useful operators that can be defined by the primitive ones
 - For example, intersection via union and difference

Outline

- Background
 - The Primitive Operators
 - Implied Operators
 - Joins
 - Division
 - Equivalence & Independence
 - Taste of Query Optimization

Task (for the end of this part)

Phrase a query that finds the names of students who get private lessons
(i.e., the student takes a course that no one else takes)

Pairs / groups allowed. Email solution to me:
 * bennyK@cs.technion.ac.il
6 Primitive (Basic) Operators

1. Projection (π)
2. Selection (σ)
3. Renaming (ρ)
4. Union (\cup)
5. Difference (\setminus)
6. Cartesian Product (\times)

Projection by Example

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>915</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

$\pi_{\text{sid}, \text{name}}(R) = \begin{cases}
\text{sid} & \text{Alma} \\
\text{sid} & \text{Amir} \\
\text{sid} & \text{Ahuva}
\end{cases}$

Fewer tuples (why?)

Selection by Example

<table>
<thead>
<tr>
<th>student</th>
<th>year</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>1</td>
<td>DB</td>
<td>80</td>
</tr>
<tr>
<td>Alma</td>
<td>1</td>
<td>PL</td>
<td>94</td>
</tr>
<tr>
<td>Ahuva</td>
<td>2</td>
<td>DB</td>
<td>72</td>
</tr>
</tbody>
</table>

$\sigma_{\text{course} = \text{DB}}(R) = \begin{cases}
\text{student} & \text{Alma} \\
\text{student} & \text{Ahuva}
\end{cases}$

$\sigma_{\text{year} = 1 \land \text{grade} > 84}(R) = \begin{cases}
\text{student} & \text{Alma}
\end{cases}$

Definition of Projection

• Projection is a unary operator of the form π_{A_1, \ldots, A_k} where each A_i is an attribute name.
 – A projection is parameterized by attributes, so we actually have many different projection operators.

• Legal input: a relation R in with attributes A_1, \ldots, A_k (and possibly others).

• $\pi_{A_1, \ldots, A_k}(R)$ is the relation S with:
 – Header (A_1, \ldots, A_k)
 – Tuple set $\{t[A_1, \ldots, A_k] \ | \ t \in R\}$

Definition of Selection

• Selection is a unary operator of the form σ_c, where c is a logical condition (selection predicate) on attributes.
 – c consists of comparisons and logical connectors (\land, \lor, \neg).
 – $\text{price} \geq 500 \land \text{price} \leq \text{budget}$

• Legal input: a relation with all the attributes mentioned in the selection predicate.

• The condition is applied to each tuple in the input, and each violating tuple is filtered out.

• Formally, $\sigma_c(R)$ is the relation S with the header of R and the tuple set $\{t \ | \ t \in R \land t \models c\}$

Variants of Selection

• Various variants of RA may allow different languages for specifying selection predicates.
 – e.g., $c > a^2 + b^2$; name starts with 'A', etc.

• Common to all predicate formalisms: a predicate applies to a single tuple.

• Cannot state cross-tuple conditions, e.g.,
 – “there is another tuple with the same name”
 – “contains at least 100 tuples”
Cartesian Product by Example

\[R \times S = \]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{id} & \text{name} & \text{year} & \text{topic} \\
\hline
861 & Alma & 2 & PL \\
753 & Amir & 1 & DB \\
955 & Ahuva & 2 & OS \\
\hline
\end{array}
\]

Definition of Cartesian Product

- Binary operator, similar to set product, but each output pair is combined into a single tuple
- **Legal input:** A pair of relations with disjoint sets of attributes
- So how to cross-product Mom(ssn) with Dad(ssn)?
- Formally, let \(R \) and \(S \) have the headers \((A_1, \ldots, A_k) \) and \((B_1, \ldots, B_m) \), respectively; then \(R \times S \) is the relation \(T \) with:
 - Header \((A_1, \ldots, A_k, B_1, \ldots, B_m) \)
 - Tuple set \(\{ (r,s) \mid r \in R \text{ and } s \in S \} \)
 - denotes concatenation

Definition of Renaming

- Renaming is a unary operator of the form \(\rho_{A/B} \)
- **Legal input:** A relation with a header that contains \(A \) and does not contain \(B \)
- Renaming changes only the header—attribute \(A \) becomes \(B \)
- Formally, \(\rho_{A/B}(R) \) is the relation \(S \) with:
 - The header of \(R \) with \(A \) replaced by \(B \)
 - The tuple set of \(R \)

Definition of Union and Difference

- Binary operators, interpreted as operations over the tuple sets
- **Legal input:** A pair of relations \(R \) and \(S \) with the exact same header
 - We then say that \(R \) and \(S \) are union compatible
- Formally:
 - \(R \cup S \) is the relation with the header of \(R \) and \(S \) and the union of the tuple sets
 - \(R \setminus S \) is the relation with the header of \(R \) and \(S \) and the difference between the tuple sets

Renaming by Example

\[\rho_{\text{year/level}}(R) = \]

\[
\begin{array}{|c|c|c|}
\hline
\text{student} & \text{year} & \text{level} \\
\hline
Ahuva & 955 & 861 \\
Anna & 753 & 76 \\
Alma & 955 & 23 \\
Amir & 753 & 45 \\
Ahuva & 955 & 76 \\
Alma & 861 & 23 \\
Amir & 753 & 45 \\
Alma & 861 & 76 \\
Ahuva & 955 & 76 \\
\hline
\end{array}
\]

Union and Difference by Example

\[R = \]

\[
\begin{array}{|c|c|c|}
\hline
\text{student} & \text{year} & \text{course} \\
\hline
Ahuva & 1 & DB \\
Anna & 1 & PL \\
Alma & 2 & DB \\
Amir & 1 & PL \\
\hline
\end{array}
\]

\[S = \]

\[
\begin{array}{|c|c|c|}
\hline
\text{student} & \text{year} & \text{course} \\
\hline
Ahuva & 1 & DB \\
Anna & 1 & PL \\
Alma & 2 & DB \\
Amir & 1 & PL \\
\hline
\end{array}
\]

\[R \cup S = \]

\[
\begin{array}{|c|c|c|}
\hline
\text{student} & \text{year} & \text{course} \\
\hline
Ahuva & 1 & DB \\
Anna & 1 & PL \\
Alma & 1 & PL \\
Amir & 1 & PL \\
Ahuva & 2 & DB \\
Alma & 1 & DB \\
Amir & 1 & DB \\
Alma & 2 & DB \\
Ahuva & 2 & DB \\
\hline
\end{array}
\]

\[R \setminus S = \]

\[
\begin{array}{|c|c|c|}
\hline
\text{student} & \text{year} & \text{course} \\
\hline
Ahuva & 2 & DB \\
Alma & 2 & DB \\
\hline
\end{array}
\]

Definition of Renaming

- Renaming is a unary operator of the form \(\rho_{A/B} \)
 - where \(A \) and \(B \) are attribute names
 - **Legal input:** A relation with a header that contains \(A \) and does not contain \(B \)
 - Renaming changes only the header—attribute \(A \) becomes \(B \)
 - Formally, \(\rho_{A/B}(R) \) is the relation \(S \) with:
 - The header of \(R \) with \(A \) replaced by \(B \)
 - The tuple set of \(R \)

Definition of Union and Difference

- Binary operators, interpreted as operations over the tuple sets
 - **Legal input:** A pair of relations \(R \) and \(S \) with the exact same header
 - We then say that \(R \) and \(S \) are union compatible
 - Formally:
 - \(R \cup S \) is the relation with the header of \(R \) and \(S \) and the union of the tuple sets
 - \(R \setminus S \) is the relation with the header of \(R \) and \(S \) and the difference between the tuple sets

Answer:

- \(\rho_{\text{year/level}}(R) \) contains 1000 tuples, how many tuples can be in \(R \cup S ? \)
- \(R \setminus S \) contains 0 tuples, how many tuples can be in \(R \times S ? \)
- If each of \(R \) and \(S \) have 1000 tuples, how many tuples can be in \(R \times S ? \)
- If \(R \) has 1000 tuples, how many tuples can \(\rho_{\text{year/level}}(R) \) have?
Shorthand Notation

For Cartesian product of named relations (e.g., \(R \times S \)), we actually allow joint attributes, and implicitly assume their renaming to name.attribute.

\[
R = \begin{array}{c|c|c}
\text{id} & \text{name} & \text{year} \\
861 & Alma & 2 \\
753 & Amir & 1 \\
955 & Ahuva & 2 \\
\end{array}
\]

\[
S = \begin{array}{c|c}
\text{id} & \text{cid} \\
861 & 23 \\
753 & 45 \\
955 & 76 \\
\end{array}
\]

\[
R \times S = \begin{array}{c|c|c|c|c}
\text{id} & \text{name} & \text{year} & \text{id} & \text{cid} \\
861 & Alma & 2 & 861 & 23 \\
753 & Amir & 1 & 753 & 45 \\
955 & Ahuva & 2 & 955 & 76 \\
\end{array}
\]

Parentheses Convention

- We have defined 3 unary operators and 3 binary operators.
- It is acceptable to omit the parentheses from \(o(R) \) when \(o \) is unary.
- Then, unary operators take presence over binary ones.

Example:

\[
(\sigma_{\text{course='DB'}}(\text{Course})) \times (\rho_{\text{cid}/\text{cid1}}(\text{Studies}))
\]

becomes

\[
\sigma_{\text{course='DB'}}(\text{Course}) \times (\rho_{\text{cid}/\text{cid1}}(\text{Studies}))
\]

Composition Example

Names of students who study DB:

\[
\pi_{\text{name}}(\sigma_{\text{sid}=\text{sid1}}(\rho_{\text{sid}/\text{sid1}}(\text{Student} \times \pi_{\text{sid,cid}}(\sigma_{\text{cid}=\text{cid1}}(\sigma_{\text{course='DB'}}(\text{Course}) \times (\rho_{\text{cid}/\text{cid1}}(\text{Studies}))])))
\]

\[
\begin{array}{c|c|c}
\text{sid} & \text{name} & \text{year} \\
861 & Alma & 2 \\
753 & Amir & 1 \\
955 & Ahuva & 2 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{sid} & \text{cid} & \text{topic} \\
861 & 23 & PL \\
753 & 45 & DB \\
955 & 76 & OS \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
\text{sid} & \text{cid} & \text{name} & \text{year} & \text{topic} \\
861 & 23 & Alma & 2 & PL \\
753 & 45 & Amir & 1 & DB \\
955 & 76 & Ahuva & 2 & OS \\
\end{array}
\]
<table>
<thead>
<tr>
<th>Student</th>
<th>id</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>955</td>
<td>1</td>
<td>Ahuva</td>
<td>2</td>
</tr>
<tr>
<td>955</td>
<td>2</td>
<td>Ahuva</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>1</td>
<td>Amir</td>
<td>2</td>
</tr>
<tr>
<td>861</td>
<td>2</td>
<td>Alma</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>id</th>
<th>topic</th>
<th>cid</th>
<th>sid</th>
</tr>
</thead>
<tbody>
<tr>
<td>753</td>
<td>1</td>
<td>DL</td>
<td>45</td>
<td>861</td>
</tr>
<tr>
<td>753</td>
<td>3</td>
<td>OS</td>
<td>45</td>
<td>861</td>
</tr>
<tr>
<td>753</td>
<td>2</td>
<td>DB</td>
<td>753</td>
<td>861</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studies</th>
<th>id</th>
<th>topic</th>
<th>cid</th>
<th>sid</th>
</tr>
</thead>
<tbody>
<tr>
<td>753</td>
<td>1</td>
<td>DL</td>
<td>45</td>
<td>861</td>
</tr>
<tr>
<td>753</td>
<td>3</td>
<td>OS</td>
<td>45</td>
<td>861</td>
</tr>
<tr>
<td>753</td>
<td>2</td>
<td>DB</td>
<td>753</td>
<td>861</td>
</tr>
</tbody>
</table>
Phrase a query that finds the names of students who get private lessons (i.e., the student takes a course that no one else takes)

Pairs / groups allowed. Email solution to me:

bennyk@cs.technion.ac.il

• Write p[A] for π_s,cid=α(β)

\[a = \pi_{cid}(\sigma_{cid=\alpha}(\text{Studies} \times \rho_{sid/cid/\text{Studies}})) \]

• Courses with >2 students:
 \[a = \pi_{cid}(\sigma_{cid=\alpha}(\text{Studies} \times \rho_{sid/cid/\text{Studies}})) \]

• Courses with precisely one student:
 \[\beta = (\pi_{cid}\text{Studies} \setminus a) \]

• ID of students who get a private lesson:
 \[\gamma = \pi_{sid}(\sigma_{cid=\alpha}(\text{Studies} \times \rho_{cid/\beta})) \]

• Final answer (join w/ names):
 \[\pi_{name,\text{id}=s}(\rho_{sid/\text{Student}} \times \gamma) \]
Joins

- Cartesian product is rarely standalone without selection, and is commonly followed by projection.
- The combination $\pi \sigma \times$ is referred to generally as “join”.
- There are several common cases that apply specific selections and projections, which we introduce here.

Conditional Join

- Binary operator $R \bowtie_c S$ where c is a condition over the header of $R \times S$.
- Shorthand notation for: $\alpha_c(R \times S)$.
- Example: $R \bowtie_{a=b \land c<d} S$.

Theta Join and Equijoin

- **Theta join** is a special case of conditional join \bowtie_c where c has the form $A \theta B$ or $A \theta v$ where A and B are attributes and θ is a comparison operator.
 - Example: $R \bowtie_{a=b \land c<d} S$.
- **Equijoin** is the special case where c has the form $A = B$ where A and B belong to the left and right operands, respectively.
 - Example: Course$_{\text{name} = \text{course}}$ Studies.

Natural Join \bowtie

- Cartesian product, equality on all common attributes, projection on unique attributes.
- Formally, $R \bowtie S$ is equivalent to:
 $\pi_B\sigma_{A_1=A'_1,\ldots,A_k=A'_k}(R \times \rho_{A_1/A'_1}(R) \times \rho_{A_2/A'_2}(R) \times \cdots \times \rho_{A_k/A'_k}(R))$

 where:
 - (B_1,\ldots,B_m) is the header of R.
 - (A_1,\ldots,A_k) are the attributes common to R and S.
 - (C_1,\ldots,C_l) is the header of S with A_1,\ldots,A_k removed.

 - Should we care about which new names are defined by renaming? (No)
Semijoin

- Semijoin of R and S is the restriction of R to the tuples that can naturally join with S.
- Formally: \(R \bowtie S \) is the operator equivalent to

\[
\pi_{A_1, \ldots, A_m}(R \times S)
\]

where \((A_1, \ldots, A_m)\) is the header of R.

Semijoin Example

\[
S = \begin{array}{ccc}
861 & Alma & 2 \\
753 & Amir & 1 \\
955 & Ahuva & 2 \\
\end{array} \\
T = \begin{array}{ccc}
861 & PL & \\
861 & DB & \\
762 & OS & \\
955 & OS & \\
\end{array} \\
S \bowtie T = \begin{array}{ccc}
861 & Alma & 2 \\
955 & Ahuva & 2 \\
\end{array}
\]

Intersection

- The usual binary set-theoretic operator \(\cap \).
- Legal input: a pair of relations that are union compatible (i.e., same header).
- Special case of natural join and semijoin:
 - If R and S have the same header, then \(R \bowtie S = R \cap S \).

Outline

- Background
- The Primitive Operators
- Implied Operators
 - Joins
 - Division
- Equivalence & Independence
- Taste of Query Optimization

Studies

<table>
<thead>
<tr>
<th>sid</th>
<th>student</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>DB</td>
</tr>
<tr>
<td>861</td>
<td>Alma</td>
<td>PL</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>DB</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>AI</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>PL</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>DB</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>AI</td>
</tr>
</tbody>
</table>

CourseType

<table>
<thead>
<tr>
<th>course</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>core</td>
</tr>
<tr>
<td>PL</td>
<td>core</td>
</tr>
<tr>
<td>AI</td>
<td>elective</td>
</tr>
<tr>
<td>DC</td>
<td>elective</td>
</tr>
</tbody>
</table>

Who took all core courses?

Division

- Consider two relations \(R(X,Y) \) and \(S(Y) \):
 - Here, \(X \) and \(Y \) are tuples of attributes.
 - \(R \div S \) is the relation \(T(X) \) that contains all the \(X\)s that occur with every \(Y \) in \(S \).
Formal Definition

- **Legal input**: \((R,S)\) such that \(R\) has all the attributes of \(S\)
- \(R÷S\) is the relation \(T\) with:
 - The header of \(R\), with all attributes of \(S\) removed
 - Tuple set \(\{t[X] \mid t[X,Y] \in R \text{ for every } s[Y] \in S\}\)

This is an abuse of notation, since the attributes in \(X\) need not necessarily come before those of \(Y\).

Questions

1. Course: If \(R\) has 1000 tuples and \(S\) has 100 tuples, how many tuples can be in \(R÷S\)?
2. Course: If \(R\) has 1000 tuples and \(S\) has 1001 tuples, how many tuples can be in \(R÷S\)?

Examples of Inexpressible Queries

- Aggregates: How many followers does Ahuva have? How many persons does one follow on average?
- Transitive closure: Is there a follower path from Anna to Amir? Is there a cycle?

Outline

- Background
- The Primitive Operators
- Implied Operators
 - Joins
 - Division
- Equivalence & Independence
- Taste of Query Optimization
RA Expressions (Queries)

• Let s be a relation schema
 – Recall: s is a finite set of named relation schemas
• An RA expression (RA query) over s is an expression in RA, applied to the relation names of s
• For example:
 – $\pi_{\text{sid}}(\sigma_{\text{sid} = \text{stud}}(\text{Student} \times \rho_{\text{sid}}/	ext{stud} \text{Studies}))$

Query Result

• Let S be a database schema
• Let φ be an RA query over S
• Let I be a database instance over S
• The result of evaluating φ over I, denoted $\varphi(I)$, is the relation obtained by applying φ to the relations of I
 – That is, every relation name is replaced with the corresponding relation in I

Equivalence of RA Expressions

• Let s be a database schema, and let φ and ψ be two RA queries over s
• We say that φ and ψ are equivalent, denoted $\varphi \equiv \psi$, if:
 for every instance I over s it holds that $\varphi(I) = \psi(I)$

Who Cares?

• Query optimization: we wish to allow DBMS to replace a query with an equivalent one that is more efficient to evaluate
• Expressiveness: do different sets of operators “give the same” class of expressible questions?
• Examples on $R(A,B)$, $S(A,B)$, $T(A,B)$
 – $\sigma_{A='a'}(R \bowtie S) \equiv (\sigma_{A='a'}R) \bowtie (\sigma_{A='a'}S)$ (selection push)
 – $\pi_{A}(R \cup S) \equiv \pi_{A}(R) \cup \pi_{A}(S)$
 – $(R \times S) \bowtie T \equiv (T \times S) \bowtie R$
 – Is $\rho_{A/B}(R \times S) \equiv \pi_{A}R$?

Containment

• Let S be a database schema, and let φ and ψ be two RA queries over S
• We say that φ is contained in ψ, denoted $\varphi \subseteq \psi$, if for every instance I over S we have $\varphi(I) \subseteq \psi(I)$

Q: How does containment relate to equivalence?

$\varphi \equiv \psi$ is the same as $(\varphi \subseteq \psi$ and $\psi \subseteq \varphi)$
6 Primitive Operators

1. Projection (π)
2. Selection (σ)
3. Renaming (ρ)
4. Union (\cup)
5. Difference (\setminus)
6. Cartesian Product (\times)

Q: Is this a "good" set of primitives? Could we drop an operator "without losing anything"?

Q: How do we prove non-containment? non-equivalence?

Answer: show a counterexample

Independence

- Let o be an RA operator, and let A be a set of RA operators
- We say that o is independent of A if o cannot be expressed in A; that is, no expression in A is equivalent to o

Recipe for Proving Independence

- Proving that operator o is independent:
 1. Fix a schema S and an instance I over S
 2. Find a property P over relations
 3. Prove that for every expression φ over S that does not use o, the relation $\varphi(I)$ satisfies P
 - Such proofs are typically by induction on the size of the expression, since operators compose
 4. Find an expression ψ such that ψ uses o and $\psi(I)$ violates P
Outline

- Background
- The Primitive Operators
- Implied Operators
- Joins
- Division
- Equivalence & Independence
- Taste of Query Optimization

Rules of Thumb for Optimization

- Main computational challenges in RA:
 - Large intermediate results
 - Join is expensive
 - Make intermediate results as small as possible before joining (while preserving equivalence)
 - Apply selection and projection as early as possible (“push select/projection”)
 - Reorder joins to minimize intermediate relations
 - Some optimization decisions are “always beneficial” (e.g., push selection) while others require knowledge on the data (e.g., join order)

Pushing Projection

- Projection reduces the length of each row, and can substantially reduce the number of rows
 - Example: Person(ssn,country)
- Consider the query \(n_k(R_1 \bowtie R_2) \), denote:
 - \(Y = R_1 \bowtie R_2 \) (i.e. the attributes in both \(R_1 \) and \(R_2 \))
 - \(X = X_1 \bowtie R_2 \)
 - \(X = X_1 \bowtie R_2 \)
 - (Note the abuse of notation – we mix attribute sequences with attributes sets)
- We would like to push projections into the join, that is:
 \[n_k \left(n_{k_2}(R_1) \bowtie n_{k_2}(R_2) \right) \]
 - Which \(Z_1 \) and \(Z_2 \) can work (equivalence preserved)?

Correct Projection Push

\[
\begin{align*}
n_k(R_1 \bowtie R_2) &= n_k(R_1) \bowtie n_k(R_2) \quad ? \\
n_k(R_1 \bowtie R_2) &= n_k(R_1) \bowtie n_k(R_2) \quad ? \\
n_k(R_1 \bowtie R_2) &= n_k(n_k(R_1) \bowtie n_k(R_2)) \quad ?
\end{align*}
\]

When we push projection, we need to retain all the attributes that are used for (1) joining, and (2) operations outside the join

Pushing Down the Expression Tree

\[
\begin{align*}
n_k(R_1 \bowtie R_2) &= n_k(n_k(R_1) \bowtie n_k(R_2)) \\
n_k(R_1 \bowtie R_2) &= n_k(R_1) \bowtie n_k(R_2)
\end{align*}
\]
Pushing Down the Expression Tree

- Can we rewrite $\sigma_c(R_1 \times R_2)$ as $(\sigma_c R_1 \times \sigma_c R_2)$?
- If all the attributes of C are in R_2, then $\sigma_c(R_1 \times R_2) \equiv (\sigma_c R_1 \times R_2)$
- If all the attributes of C are in R_2, then $\sigma_c(R_1 \times R_2) \equiv (R_1 \times \sigma_c R_2)$
- If all the attributes of C in both R_1 and R_2, then $\sigma_c(R_1 \times R_2) \equiv (\sigma_c R_1 \times \sigma_c R_2)$
- Pushing selection is generally beneficial; we may need some rewriting to get opportunities...

Examples of Rewriting Operations

- Splitting conjunctions:
 \[\sigma_{c_1}(R) \equiv \sigma_{c_1}(\sigma_{c_2}(R)) \equiv \sigma_{c_1}(\sigma_{c_2}(R)) \]
 - Applies to disjunction as well?
- Pushing through selection:
 \[\sigma_c(\pi_d(R)) \equiv \pi_d(\sigma_c(R)) \]
- Pushing through projection:
 \[\pi_c(\sigma_c(R)) \equiv \pi_c(\sigma_c(R)) \]
 - Assuming that c uses only attributes from A!

Rewriting Joins

- Up to order of attributes, the natural join is **commutative** and **associative**
 - Commutative: $R \times S \equiv S \times R$
 - Associative: $(R \times S) \times T = R \times (S \times T)$
- Proof: straightforward
- So, given an RA query that involves only natural joins, apply the joins in whatever order you want (similarly to addition)
 - We may need to reorder attributes... nonissue

Example (cont’d)

- Person[ssn,country]
- Picture[pid,topic,album]
- Likes[ssn,album]

Example (cont’d)

- Person[ssn,country]
- Picture[pid,topic,album]
- Likes[ssn,album]

Example (cont’d)

- Person[ssn,country]
- Picture[pid,topic,album]
- Likes[ssn,album]
Perspective on Query-Plan Optimization

- Algorithms for RA query-plan optimization have been the subject of much research.
- One of the first and common algorithms is the "Sellinger algorithm" from IBM Almaden.
 - [Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Loras, Thorne G. Price: Access Path Selection in a Relational Database Management System. SIGMOD Conference 1979: 23-34]
 - Idea: dynamic programming; compute cost & size estimation for every possible subquery, using the costs of smaller subqueries.
- General toolkit and concepts apply to many data/query models: algebra, equivalence, cost, plan optimization.

Note on Alternative Approaches

- In a recent line of research, several alternative algorithms for RA computation are developed.
- These algorithms do not construct intermediate results from sub-queries.
 - Rather, compute answers by simultaneously scanning all input relations.
- More reading:
 - LogicBox’s Leapfrog Trie Join:
 - Stanford’s Minesweeper:
 - [Hung Q. Ngo, Dung T. Nguyen, Christopher Re, Atri Rudra: Beyond worst-case analysis for joins with minesweeper. PODS 2014: 234-245]
- Not discussed in this course.