Mathematical Techniques in the Theory of Distributed Computing, 236602
Spring 2013, Home Assignment 4

1. Let G be a path of n nodes v_1, \ldots, v_n, i.e., the set of edges is $\{\{v_i, v_{i+1}\} \mid 1 \leq i \leq n - 1\}$. Assume that the node v_1 initially holds a rumor. Prove a tight bound for the number of rounds required for rumor spreading. That is, prove a lower bound on this complexity, and show an algorithm that attains this bound.

2. Let G be a star graph of n nodes v_1, \ldots, v_n, i.e., the set of edges is $\{\{v_n, v_i\} \mid 1 \leq i \leq n - 1\}$. Assume that the center node v_n initially holds a rumor, and consider running randomized rumor spreading with a uniform distribution under the PUSH model. Analyze the number of rounds it takes for all nodes to have the rumor with high probability.

3. This question discusses expansion of d-regular graphs, which are graphs where every node has a constant degree d. The vertex-expansion of a graph G is
 \[\alpha(G) = \min_{S \subseteq V, |S| \leq n/2} \frac{|N(S)|}{|S|}, \]
 where $N(S)$ is the set of vertices in $V \setminus S$ which have at least one neighbor in S. The edge-expansion of G is
 \[h(G) = \min_{S \subseteq V, |S| \leq n/2} \frac{|E(S, V \setminus S)|}{|S|}, \]
 where $E(S, V \setminus S)$ is the set of edges with exactly one endpoint in S.

 (a) Prove that if G is a d-regular graph then its edge-expansion and vertex-expansion are in the same order. That is, prove that $\alpha(G) = \Theta(h(G))$.

 (b) Show an example of a d-regular graph with expansion $O(\frac{1}{n^{1/d}})$. (Note that a random d-regular graph has a constant expansion with high probability.)

Submission date: 20/6/2013.

Try to solve the problems by yourself, and in any case write the solution by yourself.

For each question please write if you got help, from whom, and how much.