1. Prove that in a connected (1-interval connected) dynamic network of size n, the counting problem can be solved in $O(n)$ rounds using messages of size $O(n \log n)$. Find the smallest number of rounds that you can for the $O(n)$ expression.

2. For the T-token dissemination algorithm we saw in class for $2T$-interval connected graphs, prove the claim that for every node u, token t, and round r such that $t\text{dist}_i(u, t) \leq r$, one of the following holds:

 (a) $t \in S_{u,i,r+1}$, or

 (b) $S_{u,i,r+1}$ contains at least $r - t\text{dist}_i(u, t)$ tokens that are smaller than t.

3. A graph $G = (V, E)$ is called k-vertex connected if for very two nodes $u, v \in V$, there are k vertex-disjoint paths connecting u and v. Show that if the dynamic graph $\{G_i\}_{i=1}^{\infty}$ is always k-vertex connected (that is, G_i is k-vertex connected for all $i \geq 1$), then the 1-token dissemination problem can be solved in $O(n/k)$ rounds.

4. Consider the dynamic network setting where the size of messages is bounded by the size of a single token, and consider the problem of disseminating n tokens that are all given as input to the same node v. A deterministic algorithm is knowledge-based if the token a node sends in a round is a function of its ID, the round number, and the set of tokens it knows. Prove that in the above setting, any knowledge-based algorithm requires $\Omega(n^2)$ rounds to complete on a 1-interval connected graph.

Submission date: 30/5/2013.

Try to solve the problems by yourself, and in any case write the solution by yourself.

For each question please write if you got help, from whom, and how much.