236358
Distributed Graph Algorithms

Spring 2017
Class by Keren Censor-Hillel
Spanners

• Given $G=(V,E)$ and E_S in E, a subgraph $S=(V,E_S)$ is called a \textbf{k-spanner} of G if:

 – For every u,v in V:

 $\text{dist}_S(u,v) \leq k \cdot \text{dist}_G(u,v)$

 – It is enough that the condition holds for every u,v that are neighbors in G.

• k is called the \textbf{stretch} of the spanner
Spanners

• **Illustration**

• Every graph is a 1-spanner of itself

• **Why spanners?**
 – Need a sparse subgraph
 – But sparsity increases distances
 • a tree may have a linear stretch
 – We care about the trade-off
A Distributed $(2k-1)$-Spanner

• **Theorem**: There is a distributed algorithm that constructs a $(2k-1)$-spanner with $O(kn^{1+1/k})$ edges in $O(k^2)$ rounds
NotaJon

Clustering:

- **Cluster**: A connected set of nodes C in V

- **Clustering**: A set of clusters $P=\{C_1,\ldots,C_p\}$

- Given a clustering P, a node v is **covered** in P if there is a cluster C in P such that v is in C.
 - We denote this cluster as $C(v)$

- A node v and a cluster C are called **neighbors** if there is a node u in C such that v and u are neighbors
Template

• \(\mathbf{S} = \text{empty (spanner edges)} \)
• Initially \(\mathbf{P}_0 = \{ \{ \mathbf{v} \} \mid \mathbf{v} \text{ in } \mathbf{V} \} \)

• For \(k-1 \) iterations:
• Given \(\mathbf{P}_{i-1} \), each \(\mathbf{C} \) in \(\mathbf{P}_{i-1} \) is selected with independent probability \(\frac{1}{n^{1/k}} \)
 – Denote \(\mathbf{P}'_i \) the set of selected clusters
Template

• For every node \(v \) that is uncovered in \(P'_i \)

 – **Rule 1**: If \(v \) has neighbors in \(P'_i \) then \(v \) joins one such neighbor \(C \) and an edge from \(v \) to \(C \) is added to \(S \)

 – **Rule 2**: Otherwise, for every \(C \) in \(P_{i-1} \) that is a neighbor of \(v \), an edge from \(v \) to \(C \) is added to \(S \)
Template

• The new clustering is P_i

 – If **Rule 1** applied to v then v is covered in P_i

 – Otherwise, if **Rule 2** applied to v then v is uncovered in P_i
Illustration

C in P_{i-1} selected to P'_i

C', C'' in P_{i-1} not selected to P'_i
Illustration

C in P_{i-1} selected to P'_i

C', C'' in P_{i-1} not selected to P'_i
Illustration

C in P_{i-1} selected to P'_i

C', C'' in P_{i-1} not selected to P'_i
Template

• Iteration k:

• P_k is empty
 – Given P_{k-1}, each C in P_{k-1} is selected with probability 0

• Rules 1 and 2 remain the same
Analysis – Number of Edges

• **Claim 1:** The expected number of edges in S is $O(kn^{1+1/k})$

• **Proof:** We will see that the expected number of edges that are added to S in each iteration is $O(n^{1+1/k})$

• Edges that are added according to Rule 1 are at most one for each node, so their total number is at most n.
Analysis – Number of Edges

• How many edges are added to S according to Rule 2?
• Let t be the number of clusters in P_{i-1} that are neighbors of v.
• If $t \leq n^{1/k}$ then by Rule 2 we add at most $n^{1/k}$ edges to S
Analysis – Number of Edges

• Otherwise, denote $t=qn^{1/k}$, where $q>1$.

• The probability for a cluster C in P_{i-1} to be selected into P'_i is $1/n^{1/k}$

• So, the probability that no cluster in P_{i-1} that is a neighbor of v is selected is at most $(1-1/n^{1/k})^t$.
Analysis – Number of Edges

• In this case we add t edges to S according to Rule 2. This gives that the expected number of edges that are added according to Rule 2 is at most:

• $t(1-1/n^{1/k})^t = qn^{1/k}((1-1/n^{1/k})n^{1/k})^q$

$$= n^{1/k} q(1/e)^q$$

This is < 1 for $q > 1$

$$= O(n^{1/k})$$
Analysis – Number of Edges

• In iteration k:

• The probability of C to survive all iterations is $(1/n^{1/k})^{k-1}$

• So for a node v, the number of edges added to S in iteration k is at most n times the above, which is $n^{1/k}$.
Analysis - Stretch

• **Claim 2**: The stretch of S is at most $2k-1$

• **Proof**: Consider neighbors v and u. We will see that $\text{dist}_S(u, v) \leq 2k-1$.

• Let j be the minimal index such that either u or v is uncovered in P_j (possibly both).
 – There must be such j because in P_0 all nodes are covered and in P_k none are covered.
Analysis - Stretch

• Assume w.l.o.g. that u is uncovered. This means that Rule 2 was applied to u.

• Since j is minimal, both u and v are covered in in P_{j-1}.

• Since u and v are neighbors, there is an edge from u to $C(v)$ that is added to S according to Rule 2.
 – This may be an edge to some other w in $C(v)$.

Keren Censor-Hillel, Spring 2017
Illustration

\[C(v) \text{ in } P_{j-1} \]
Analysis - Stretch

• This gives that:

\[\text{dist}_S(u,v) \leq \text{dist}_S(u,w) + \text{dist}_S(w,v) \]
\[\leq 1 + 2(j-1) \]
\[\leq 2j-1 \]
\[\leq 2k-1 \]
Analysis - Stretch

• Why \(\text{dist}_S(w,v) \leq 2(j-1) \) for \(v \) and \(w \) in the same \(C \) in \(P_{j-1} \) ?

• By induction on \(j \), the radius of every \(C \) in \(P_j \) is at most \(j \). That is, there is a \(z \) in \(C \) such that for every \(y \) in \(C \) we have \(\text{dist}_S(z,y) \leq j \)
Distributed Implementation

• Every component C, which was initially $\{z\}$, is maintained by its center z.
 – z decides whether C is selected in iteration i
 – Forwards this decision to all nodes of C

• Nodes of C tell their neighbors whether C is selected

• Every uncovered node v knows whether to apply Rule 1 or Rule 2, and chooses edges accordingly
Distributed Implementation

- **Claim 3**: The distributed implementation completes in \(O(k^2)\) rounds.

- **Proof**: In iteration \(i\), it takes \(i\) rounds for all nodes of a cluster \(C\) to know whether it is selected or not (because \(i\) is the radius of \(C\)).

- Another round is needed for telling the neighbors of \(C\), and another round for uncovered nodes to respond.
Distributed Implementation

• This gives $O(i)$ rounds for iteration i
• The total number of rounds is:

$$\sum_{i=1}^{k} O(i) \leq O(k^2)$$

Theorem: There is a distributed algorithm that constructs a $(2k-1)$-spanner with $O(kn^{1+1/k})$ edges in $O(k^2)$ rounds
Additional Spanners

• We saw today a **multiplicative spanner**

• There are **(\(\alpha,\beta\))-spanners**, in which for every \(u\) and \(v\) in \(V\):

\[
\text{dist}_S(u,v) \leq \alpha \text{ dist}_G(u,v) + \beta
\]

 – It is no longer enough that the condition holds for neighbors in \(G\)

• There are **purely additive c-spanners**, in which for every \(u\) and \(v\) in \(V\):

\[
\text{dist}_S(u,v) \leq \text{dist}_G(u,v) + c
\]