236358
Distributed Graph Algorithms

Spring 2017
Class by Keren Censor-Hillel
Vertex Cover

• \(U \subseteq V \) such that for every edge \(e=(u,v) \in E \)
 – \(u \) or \(v \) is in \(U \)

• **Minimum vertex cover (MVC):**
 – Find \(U \) of smallest size
 – **Weighted**: \(G=(V,w,E) \) with weights \(w:V \rightarrow W \),
 Find \(U \) of smallest **weight** \(w(U)=\Sigma_{v \in U} w(v) \)
Minimum Vertex Cover

• NP-hard

• Approximation algorithms:
 – Find a vertex cover \(U: w(U) \leq \alpha w(U_{opt}) \)
 – \(U_{opt} \) is the minimum vertex cover

• 2-approximation for unweighted:
 endpoints of greedy maximal matching

• Weighted: UGC \(\rightarrow \) no polynomial \((2-\varepsilon)\)-approximation
Local Ratio for MVC

• Consider a vertex cover U, with weight $w(U)$

• Instead of going over all nodes in U and buying their weights $w(U) = \sum_{v \in U} w(v)$, consider:

• Illustration
Local Ratio for MVC

• Going over edges \(e \) in \(E \), and buying \(z_e = \min(w(u), w(v)) \) from both endpoints \(e = (u, v) \).
 – Remaining weight

• When a node remains with zero weight we bought it entirely so we can take it into \(U \)

• When for all edges \(e \) in \(E \) we bought an endpoint, \(U \) is a vertex cover
Local Ratio for MVC

• How much did we pay for our solution?

• Consider edge $e=(u,v)$
 – We pay at most $2z_e$
 • recall $z_e = \min(w(u),w(v))$
 – An optimal OPT solution has to pay z_e
 • Because e has to be covered
Local Ratio for MVC

• We pay at most $2z_e$
• An optimal OPT solution has to pay z_e

• For e, the local ratio between the costs is ≤ 2

• For E, the ratio between the costs is ≤ 2
Local Ratio

• In a sequential implementation, this requires polynomial time

• This is a much more general framework
 – For approximations of many additional problems

• We will see: A distributed local-ratio implementation of a \((2+\varepsilon)\)-approximation for minimum vertex cover
(2+\(\varepsilon\))-approximation

• Going over edges \(e\) in \(E\), and buying \(z'_e < \min(w(u), w(v))\) from both endpoints \(e=(u, v)\).

• Still correct, possibly slower
(2+\(\varepsilon\))-approximation

• Going over edges \(e\) in \(E\), and buying \(z'_e < \min(w(u), w(v))\) from both endpoints \(e=(u,v)\).

• When a node \(v\) remains with \(\varepsilon'w(v)\) weight we take it into \(U\), paying the remaining weight
 • \(\varepsilon' = \varepsilon/(2+\varepsilon)\)

• When for all edges \(e\) in \(E\) we bought an endpoint, \(U\) is a vertex cover
(2+\(\varepsilon\))-approximation

• How much do we pay?

• Consider edge \(e=(u,v)\)
 - Assign it weight \(z(e)=\min(w(u), w(v))\)
 • Remaining weights
 - \textbf{OPT} pays at least \(\sum_{e \in E} z(e)\)

• We pay \(\sum_{v \in U} w(v)\)

• How much is it compared to \(\sum_{e \in E} z(e)\)?
(2+ε)-approximation

- We buy a node after paying \(\Sigma_{e: v \in e} z(e) \) even if its remaining weight is not 0, but \(\epsilon'w(v) \)
- \(w(v) \leq \epsilon'w(v) + \Sigma_{e: v \in e} z(e) \)
- \(\Sigma_{v \in U} w(v) \leq \left(\frac{1}{1-\epsilon'}\right) \Sigma_{v \in U} \Sigma_{e: v \in e} z(e) \)
 \[\leq \left(\frac{1}{1-\epsilon'}\right) 2\Sigma_{e \in E} z(e) \]
 \[\leq (2+\epsilon)OPT \]
Distributed Implementation

- Seems local: can work in parallel on edges that do not share endpoints
- But can create conflicts for edges that share an endpoint
 - Weight cannot become negative

- Illustration

- How do we coordinate this?
Distributed Implementation

• High level description:
 – A node sends a request X to its neighbor
 – The neighbor responds with a budget Y
 • $Y \leq X$
 – Both nodes reduce Y from their weight

• Invariants:
 – Weights always remain non-negative
Distributed Implementation

- **Initial weight**: $w_0(v)$
- **Divide weight**: The current weight $w_i(v)$ is split:
 - $\text{Vault}_i(v) \leftarrow \epsilon'w_0(v)$
 - $\text{Bank}_i(v) \leftarrow w_i(v) - \text{Vault}_i(v)$

- **Vault** is for making requests, **Bank** is for responding
Distributed Implementation

• **Initial weight:** $w_0(v)$
 – $\text{Vault}_i(v) \leftarrow \epsilon'w_0(v)$
 – $\text{Bank}_i(v) \leftarrow w_i(v) - \text{Vault}_i(v)$

• In iteration i:
 – Node v sends $\text{request}_i(v) \leftarrow \text{Vault}_i(v)/d_i(v)$ to each of its neighbors
 – Node v responds to $\text{request}_i(u)$ from $\text{Bank}_i(v)$
Distributed Implementation

• Node v responds to $\text{request}_i(u)$ from $\text{Bank}_i(v)$:
 – Sorts neighbors $u_1, \ldots, u_{d(v)}$
 – Responds to u_1 with
 $\text{budget}_{i,u_1}(v) \leftarrow \min(\text{request}_i(u_1), \text{Bank}_i(v))$
 and updates $\text{Bank}_i(v) \leftarrow \text{Bank}_i(v) - \text{budget}_{i,u_1}(v)$
 – Responds to u_2 with
 $\text{budget}_{i,u_2}(v) \leftarrow \min(\text{request}_i(u_2), \text{Bank}_i(v))$
 and updates $\text{Bank}_i(v)$
 – Etc.
Distributed Implementation

• Illustration

• Node v receives $\text{budget}_{i,v}(u_j)$ from each neighbor u_j and updates

$$\text{Vault}_i(v) \leftarrow \text{Vault}_i(v) - \sum_{j=1}^{d_i(v)} \text{budget}_{i,v}(u_j)$$

• Node v updates:
 – Weight: $w_{i+1}(v) \leftarrow \text{Vault}_i(v) + \text{Bank}_i(v)$
 – Neighbors: $d_{i+1}(v) \leftarrow d_i(v) - \left| \{j: \text{budget}_{i,v}(u_j) < \text{request}_i(v) \} \right|$
Distributed Implementation

• If $w_{i+1}(v) \leq \varepsilon' w_0(v)$ then v enters the cover U
 – Sends messages to neighbors
 – Outputs InCover

• If $d_{i+1}(v) = 0$ then v does not enter the cover U
 – Outputs NotInCover

• Otherwise, v continues to iteration $i+1$:
 – $\text{Vault}_{i+1}(v) \leftarrow \varepsilon' w_0(v)$
 – $\text{Bank}_{i+1}(v) \leftarrow w_{i+1}(v) - \text{Vault}_{i+1}(v)$
Analysis

• **Claim 1:** If $\text{budget}_{i,v}(u_j) < \text{request}_i(v)$ then u_j terminates at the end of the iteration.

• **Proof:** If $\text{budget}_{i,v}(u_j) < \text{request}_i(v)$ then $\text{Bank}_i(u_j) = 0$ and hence

$$w_{i+1}(u_j) \leq \text{Vault}_i(u_j) \leq \varepsilon'w_0(u_j)$$

so u_j outputs InCover
Analysis

- **Claim 2**: Either $d_{i+1}(v) \leq d_i(v)/2$, or $w_{i+1}(v) \leq w_i(v) - \epsilon'w_0(v)/2$

- **Proof**: If $d_{i+1}(v) > d_i(v)/2$ then, by Claim 1, for at least $d_i(v)/2$ neighbors it holds that $\text{budget}_{i,v}(u_j) = \text{request}_i(v)$.

- Since $\text{request}_i(v) = \epsilon'w_0(v)/d_i(v)$, this means that $w_{i+1}(v) \leq w_i(v) - \epsilon'w_0(v)/2$.

Keren Censor-Hillel, Spring 2017
Analysis

• **Theorem 1**: The algorithm gives a \((2+\varepsilon)\)-approximation for minimum vertex cover in \(O(2/\varepsilon'+\log\Delta)\) rounds

• **Proof**: Applying Claim 2 for node \(v\) gives:
 • There can be at most \(O(\log\Delta)\) rounds for which \(d_{i+1}(v) \leq d_i(v)/2\) happens, and
 • There can be at most \(O(2/\varepsilon')\) rounds for which \(w_{i+1}(v) \leq w_i(v) - \varepsilon' w_0(v)/2\) happens.
Improved analysis

• **Claim 2’**: Either \(d_{i+1}(v) \leq d_i(v)/K \),
 or \(w_{i+1}(v) \leq w_i(v) - \varepsilon'w_0(v)/K \)

• **Proof**: If \(d_{i+1}(v) > d_i(v)/K \) then, by Claim 1, for at least \(d_i(v)/K \) neighbors it holds that \(\text{budget}_{i,v}(u_j) = \text{request}_i(v) \).

• Since \(\text{request}_i(v) = \varepsilon'w_0(v)/d_i(v) \), this means that \(w_{i+1}(v) \leq w_i(v) - \varepsilon'w_0(v)/K \).
Analysis

• **Theorem 1’**: The algorithm gives a \((2+\varepsilon)\)-approximation for minimum vertex cover in \(O(\log\Delta/\log\log\Delta)\) rounds

• **Proof**: Applying Claim 2’ for node \(v\) gives:

 • That there can be at most \(O(\log_k \Delta)\) rounds for which \(d_{i+1}(v) \leq d_i(v)/K\) happens, and

 • There can be at most \(O(K/\varepsilon')\) rounds for which \(w_{i+1}(v) \leq w_i(v) - \varepsilon'w_0(v)/K\) happens.

• To minimize \(O(K/\varepsilon'+\log_k \Delta)\) we choose \(K = \log \Delta/\log\log\Delta\)
CONGEST?

- Even if original weights are $O(\log n)$-bit values in $W=\{1,\ldots,\text{poly}(n)\}$, fractional values may not be so.
CONGEST?

• Instead of sending requests:
 – Send $w_0(v)$ and $d_i(v)$ to all neighbors
 – Nodes locally compute requests $\varepsilon'w_0(v)/d_i(v)$
CONGEST?

• Instead of sending budgets:
 – Vault is modified to $\varepsilon'w_0(v)/2$
 – If $\text{budget}_{i,v}(u_j) = \text{request}_i(v)$ then u_j sends “accept”
 – Otherwise, respond with maximal integer t for which
 $$t\varepsilon'w_0(v)/2 \leq \text{budget}_{i,u}(v).$$
 – The amount $t\varepsilon'w_0(v)/2$ is locally computed by u.
CONGEST?

• Instead of sending budgets:
 – Vault is modified to $\varepsilon'w_0(v)/2$

 – The remainder of weight in vertex v is another value of at most $\varepsilon'w_0(v)/2$ on top of the at most $\varepsilon'w_0(v)/2$ value which might remain in $\text{Vault}_i(v)$.
 – This sums to no more than $\varepsilon'w_0(v)/2$.
 – So, indeed v returns InCover.