236358
Distributed Graph Algorithms

Spring 2017
Class by Keren Censor-Hillel
MST in CONGEST

- **BFS-based** algorithm in $O(n)$ rounds
- **GHS algorithm** in $O(n \log n)$ rounds
- **GKP algorithm** in $O(\sqrt{n} \log^* n + D)$ rounds

Question: D is necessary. What about \sqrt{n}?
- We will see that \sqrt{n} is also a lower bound
- But first, a simpler lower bound proof
Computing the Diameter

• A BFS tree gives a 2-approximation to the diameter
 \[D = \max \{ d(u, v) \mid u, v \text{ in } V \} \]

• Can be computed in \(O(D) \) rounds in CONGEST

• What about exact diameter?
• Better approximation factors?
Diameter in CONGEST

• Exact diameter can be computed in $O(n)$ rounds
 – Even APSP (all-pairs-shortest-paths)

• Any algorithm for computing the exact diameter requires $\Omega(n/\log n)$ rounds
 – Even when D is small
Approximating the Diameter in CONGEST

• A \((3/2-\epsilon)\)-approximation of \(D\) requires \(\Omega(n/\log^3 n)\) rounds

• A \(3/2\)-approximation of \(D\) can be computed in \(O((n/\log n)^{1/2}+D)\) rounds

• A threshold at \(3/2\)
Diameter in CONGEST

- **Theorem**: Any algorithm for computing the exact diameter requires $\Omega(n/\log n)$ rounds.

- **Proof**: Reduction from 2-party Set Disjointness.

- **Reminder**: If we reduce solving A to solving B, and we show that solving A is hard, then solving B is hard.
2-party communication

- Two players, Alice and Bob

- Inputs: $x^A = (x^{A_1}, \ldots, x^{A_k})$, $x^B = (x^{B_1}, \ldots, x^{B_k})$ in $\{0,1\}^k$

- Players exchange bits according to a protocol π

- Outputs: y^A, y^B in $\{0,1\}$
2-party communication

• At the beginning and after each bit that is sent in the protocol π:
 – Both players know the bit
 – Both players know whether the protocol is finished (and their output) or who sends the next bit

• The sequence of sent bits in π is the transcript
2-party communication

• The *communication complexity* of a protocol $CC(\pi)$: Total number of bits sent in the transcript

• The *communication complexity* of a problem: The minimal complexity over all protocols that solve the problem
2-party communication

• **Set Disjointness:**

• **Inputs:**
\[x^A = (x^A_1, \ldots, x^A_k), \quad x^B = (x^B_1, \ldots, x^B_k) \text{ in } \{0,1\}^k \]

• **Outputs:**
\[y^A = y^B = 1 \text{ if and only if there is an } i \in \{1, \ldots, k\} \text{ such that } x^A_i = x^B_i = 1 \]
Lower Bound for Set Disjointness

- **Theorem**: The communication complexity of set disjointness is $k+1$

- **Proof**:
 - There is a protocol that solves set disjointness with $CC(\pi)=k+1$
 - Alice sends all of her input bits to Bob (k bits)
 - Bob sends Alice the result (1 bit)
Lower Bound for Set Disjointness

- **Theorem**: The communication complexity of set disjointness is $k+1$

- **Proof**:
 - Any protocol π that solves set disjointness has $\text{CC}(\pi)=k+1$
 - Later if we have time
Computing D – Base Graph G_{base}
Computing D

Clique A\(^1\)

Clique B\(^1\)

Clique A\(^2\)

Clique B\(^2\)

a

b
Computing D

Clique A^1 Clique B^1

Clique A^2 Clique B^2

a b
Computing D

Clique A^1 Clique B^1

Clique A^2 Clique B^2
Input-Based Graph

• Given an input $x^A=(x^A_1,\ldots, x^A_k)$, $x^B=(x^B_1,\ldots, x^B_k)$ to Set Disjointness, define G as follows:

 – G contains all of G_{base}

 – For $(i,j)=1,\ldots,k$, the spike from A^1_i to A^2_j is in G if and only if $x^A_{i,j}=0$

 • $(i,j)=(i-1)\sqrt{k}+j$

 – For $(i,j)=1,\ldots,k$, the spike from B^1_i to B^2_j is in G if and only if $x^B_{i,j}=0$
Computing D – Input-Based Graph

Clique A¹ Clique B¹

Clique A² Clique B²
Computing D – Input-Based Graph
Computing D – Input-Based Graph

\[\text{Clique A}^1 \quad \text{Clique B}^1 \]

\[\text{Clique A}^2 \quad \text{Clique B}^2 \]
Computing D

• **Claim 1**: If the inputs are disjoint then $D(G)=2$. Otherwise, $D(G)=3$.

• **Proof**: By case analysis.
Diameter in CONGEST

• **Theorem**: Any algorithm for computing the exact diameter requires $\Omega(n/\log n)$ rounds.

• **Illustration**
Computing D

Clique A\(^1\)

Clique B\(^1\)

Clique A\(^2\)

Clique B\(^2\)

a

b
Diameter in CONGEST

• **Theorem**: Any algorithm for computing the exact diameter requires $\Omega(n/\log n)$ rounds

• **Proof** (cont.):
 At most $O(n\log n)$ bits can be sent over the cut in a round. But $k=\Theta(n^2)$, so the number of rounds is $\Omega(n^2/n\log n)=\Omega(n/\log n)$.

Keren Censor-Hillel, Spring 2017
(3/2-\(\varepsilon\))-Approximation of D

• **Theorem**: Any algorithm for computing a (3/2-\(\varepsilon\))-approximation of the diameter requires \(\Omega(n^{1/2}/\log n)\) rounds

• **Illustration**
(3/2-\(\epsilon\))-Approximation of D

Clique A

Clique A\(^1\)

Clique A\(^2\)

Clique B

Clique B\(^1\)

Clique B\(^2\)

a

b
(3/2-\(\varepsilon\))-Approximation of D

- **Theorem**: Any algorithm for computing a (3/2-\(\varepsilon\))-approximation of the diameter requires \(\Omega(n^{1/2}/\log n)\) rounds.

- **Proof**: Reduction from Set Disjointness. Alice simulates \(a\) and nodes in \(A^1, A^2\) and \(A^3\), Bob simulates \(b\) and nodes in \(B^1, B^2\) and \(B^3\).
(3/2-ε)-Approximation of D

• **Theorem**: Any algorithm for computing a (3/2-ε)-approximation of the diameter requires $\Omega(n^{1/2}/\log n)$ rounds.

• **Proof**: At most $O(n^{1/2}\log n)$ bits can be sent over the cut in a round. But now $k=\Theta(n)$, so the number of rounds is $\Omega(n/n^{1/2}\log n) = \Omega(n^{1/2}/\log n)$.
Lower Bound for Set Disjointness

• **Theorem**: The communication complexity of set disjointness is $k+1$

• **Proof**:
 • Any protocol π that solves set disjointness has $\text{CC}(\pi)=k+1$
 • Will be proven by **Claims 1** and **2** next.
Rectangles

• Given two subsets X,Y of 2^k, the set $X \times Y$ is called a rectangle.

• Illustration

• Given a function $f:2^k \times 2^k \rightarrow \{0,1\}$, a rectangle $X \times Y$ is f-monochromatic if $f(x,y) = f(x',y')$ for all $x,x' \in X$ and $y,y' \in Y$.
Monochromatic Rectangles

• **Claim 1**: A protocol π with $\mathbb{CC}(\pi)=b$ divides the input domain $2^k \times 2^k$ to 2^b disjoint monochromatic rectangles

• **Proof**: by induction.

• **Base case $b=0$**: an empty protocol gives the same output for every set of inputs.
Monochromatic Rectangles

• **Induction hypothesis**: A protocol \(\pi \) with \(\text{CC}(\pi) = b-1 \) divides the input domain \(2^k \times 2^k \) to \(2^{b-1} \) disjoint monochromatic rectangles
Monochromatic Rectangles

• Induction step: Let π be a protocol with $\text{CC}(\pi) = b$. Let XxY be a rectangle that corresponds to a string s of $b-1$ bits of the protocol.

• Assume that Bob sends the next bit.
Monochromatic Rectangles

• Assume that Bob sends the next bit.
 – Y' in Y: the inputs for which the next bit is 0
 – Y'' in Y: the inputs for which the next bit is 1

• XxY' and XxY'' are two monochromatic rectangles corresponding to s

• 2^{b-1} strings s give 2^b monochromatic rectangles
Rectangles in Set Disjointness

• **Claim 2**: A protocol π that solves Set Disjointness divides the input domain $2^k \times 2^k$ to at least 2^k+1 disjoint monochromatic rectangles.

• **Proof**: Consider the 2^k pairs of the form (u,\bar{u}). The output for all of them is 0.
Rectangles in Set Disjointness

• **Claim 2**: A protocol π that solves Set Disjointness divides the input domain $2^k \times 2^k$ to at least $2^k + 1$ **disjoint monochromatic rectangles**

• **Proof**: No two such pairs (u, \bar{u}) and (u', \bar{u}') can be in the same monochromatic rectangle because then the output for $(u, \bar{u'})$ and (u', \bar{u}) is also 0, but it has to be 1 for one of them.
Rectangles in Set Disjointness

- **Claim 2**: A protocol π that solves Set Disjointness divides the input domain $2^k \times 2^k$ to at least $2^k + 1$ disjoint monochromatic rectangles.

- **Proof**: This gives 2^k disjoint monochromatic rectangles.
- There is at least one more additional rectangle for outputs 1.
Lower Bound for Set Disjointness

• **Theorem**: The communication complexity of **set disjointness** is **k+1**

• **Proof**:
 • Any protocol \(\pi \) that solves set disjointness has \(\text{CC}(\pi) = k+1 \)
 • By **Claims 1** and **2**, \(\pi \) needs at least \(\log(2^k+1) \) bits, which is at least **k+1** bits.
Next Class

• The promised $\sim n^{1/2}$ lower bound for MST in CONGEST