An MST

• Minimum Spanning Tree
 – Input: a weight function \(w:E \rightarrow R \)
 – Output: a spanning tree \(T \) of \(G \), such that for every spanning tree \(S \) of \(G \), \(w(T) \leq w(S) \)
 • \(w(S) = \sum_{e \in S} w(e) \)

• Distributed setting:
 – Input to node \(v \): the weight \(w(e) \) of each \(e \) touching \(v \)
 – Output: which edges touching \(v \) are in \(T \)
 • No knowledge of the entire tree is required
Model

• **Synchronous** system. **Complexity**: number of rounds

• In each round:

 - **LOCAL**
 node v can send messages to every node in $N(v)$

 - **CONGEST**
 node v can send messages of $O(\log n)$ bits to every node in $N(v)$
 – Motivation: sending an ID in a single message
MST in CONGEST

• In general, we can replace $O(\log n)$ for the number of bits by any parameter B.

• We need to make sure that edge weights also fit in a message, so we assume $w:E \rightarrow W$, where $W=\{0,1,\ldots,\text{poly}(n)\}$.

• *Assumption:* w is 1:1 (there is a unique MST)
Sequential MST

- **Kruskal**: removing heavy edges from cycles by going over edges in increasing order of weights, adding an edge to T if it does not create a cycle *(red rule)*

- **Prim**: maintain a connected component by adding the lightest edges leaving it *(blue rule)*

- **Burovka**: initially each node is a connected component. Go over connected components in arbitrary order and added lightest edge leaving the component *(blue rule)*
MST in CONGEST

• We can simulate each of the above algorithms
 – In a naïve manner: going over all m edges in each iteration. **Time: $O(nm)$** rounds

• In $O(m)$ rounds we can learn the graph

• **We saw:** An $O(n)$-round BFS-based algorithm that simulates **Kruskal’s** algorithm
The GHS Algorithm for MST

• **Gallager-Humblet-Spira**

• **Combinatorial claim**: For every subset S of V, the lightest edge from S to $V\setminus S$ belongs to the MST.

• **High-level description**: Simulate the **Burovka/Prim** algorithms by maintaining a connected component that grows by adding the lightest edge leaving it.
The GHS Template

Variables:

\(T \), initially empty

1 repeat
2 \(F \leftarrow \) set of connected components of \(T \)
3 For each \(C \in F \)
4 add to \(T \) the lightest edge leaving \(C \)
5 until \(T \) is a spanning subgraph
 (no outgoing edges, single component)
6 return \(T \)
Correctness

• Still without implementation details

• A phase: one iteration of the loop

• Claim 1: The returned set of edges T is an MST.

• Proof: An edge e is added to T only if it is the lightest leaving C. By the combinatorial claim, e belongs to the MST. We return only when we have a spanning subgraph.
Complexity

• **Claim 2**: The algorithm completes after $O(\log n)$ phases.

• **Proof**: We prove by induction, that at the end of phase i, the size of each connected component is at least 2^i.

• **Base case**: For $i=0$, at the end of the initialization, each singleton is a connected component of size 1.
Complexity

• **Induction hypothesis:** At the end of phase $i-1$, each connected component is of size at least 2^{i-1}.

• **Induction step:** In phase i, each connected component adds an edge to another connected component. By the induction hypothesis, the size of each new component is at least $2^{i-1} + 2^{i-1} = 2^i$.

• Hence, after $O(\log n)$ iterations there is a single connected component.
Implementation

• What does it mean for a connected component to choose an edge?

• For each component C, we assign a root node r_C, which is the node with the smallest ID.

• The ID of r_C is the ID of the component C.
Implementation

• In each phase, every node v sends to all of its neighbors a triplet $(u, w(e), C')$

 – $e=\{v,u\}$ is the lightest edge that leaves v to a different component

 – $w(e)$ is the weight of e

 – C' is the ID of the component of u
Implementation

- Each node forwards the triplet of the lightest edge it received so far, towards r_C using the edges of T.
- The root r_C picks the triplet of the lightest edge it received and sends it back to all nodes of the component.
Implementation

• The chosen node v sends a message to its neighbor u, which forwards it through C'. The node with the minimal ID among all roots of the merged components becomes the new root.

 — There are missing details in the above description
Complexity – cont.

Theorem: The **GHS** algorithm computes an MST within $O(n \log n)$ rounds.

Proof:
- Correctness follows from **Claim 1**.
 - with additional details
- **Claim 2** gives that there are $O(\log n)$ phases.
- The implementation completes a phase in $O(n)$ rounds, since this is the maximum diameter of each component.
GHS – notes

• This was not a formal pseudocode
• The complexity can be reduced to $O(n)$
• The **GHS** algorithm can be implemented in an asynchronous setting within $O(m \log n)$ messages
 – This can be improved to $O(m+n \log n)$
Distributed MST Algorithms

• The **BFS-based** algorithm takes a linear number of rounds because it maintains a single connected component.

• The **GHS** algorithm is slow because despite merging components fast, their diameter may become linear very early.
The GKP algorithm for MST

• The Garay-Kutten-Peleg (GKP) algorithm which we will see next, merges components in a more careful manner that restricts their diameter
The GHS Template

Variables:
T, initially empty

1 for i=1,...,log vn do
2 F ← set of connected components of T,
3 S ← empty
4 For each C ∈ F of diam(C) ≤ 2^{i-1}
5 add lightest outgoing edge to S
6 add a maximal matching S_M in S to T
7 If C is not matched
8 add its edge to T
9 contract edges in T, run the BFS-based algorithm and add edges to T
10 return T
Maximal Matching

• A set of edges M in E
 – No two edges in M share an endpoint
 – Every $e \in E$ has an $e' \in M$ with the same endpoint

• Illustration

• Claim 1: In a graph with outdegree 1, a maximal matching can be found in $O(\log^* n)$ rounds

• $\log^* n$ = the minimal k such that $\log(\log\ldots(n)) \leq 2$ k times
Correctness

• **Claim 2**: The algorithm returns an MST

• **Proof**:
 • Edges added to T are only lightest edges between components.
 • Edges are added until there is a single component.
Analysis

• **Claim 3**: At the end of iteration i, the diameter of each component is at most $6 \cdot 2^i$.

• **Claim 4**: At the end of the last iteration, there are at most \sqrt{n} components.
Analysis

• **Claim 5**: At the end of the last iteration, if there are k components with maximal diameter D_{max}, then line 9 completes in $O(D + D_{\text{max}} + k)$ rounds.
GKP - Complexity

- **Theorem**: The GKP algorithm finds an MST in $O(\sqrt{n}\log^*n + D)$ rounds.

- **Proof**: By **Claim 2**, the algorithm returns an MST.
- By **Claims 1 and 3**, each iteration completes in $O(2^i\log^*n)$ rounds, which in total gives
\[
\sum_{i=1}^{\log^*n} O(2^i\log^*n) = O(2^{\log^*n}\log^*n) = O(\sqrt{n}\log^*n)
\]
rounds.
- By **Claims 4 and 5**, the last step takes $O(D + \sqrt{n} + 2^{\log^*n}) = O(D + \sqrt{n})$ rounds.
Analysis – Claim 3

• **Claim 3**: At the end of iteration i, the diameter of each component is at most $6 \cdot 2^i$.

• **Proof**: By induction on i.

• **Base case**: For $i=0$, the diameter is 0.

• **Induction hypothesis**: At the end of iteration i, the diameter of each component is at most $6 \cdot 2^i$.
Analysis – Claim 3

• **Induction step:** At the end of iteration $i+1$, we claim that the longest distance in each new component is created by traveling through at most 3 old components of diameter at most 2^i and 1 old component of diameter at most $6 \cdot 2^i$.

• **Illustration**
Analysis – Claim 3

• **Because**: if \(C \) adds an edge to \(C' \) then \(C' \) is matched (since the matching is maximal) to some \(C'' \). Only one of \(C' \) or \(C'' \) can have diameter larger than \(2^i \), and by the induction hypothesis its diameter is at most \(6 \cdot 2^i \). (For \(i=0 \) all **old** diameters are 1) For \(i \geq 1 \):

\[
6 \cdot 2^i + 3 \cdot 2^i + 3 \leq 9 \cdot 2^i + 3 \\
\leq 5 \cdot 2^{i+1} + 3 \\
\leq 5 \cdot 2^{i+1} + 2^{i+1} \\
\leq 6 \cdot 2^{i+1}
\]
Analysis – Claim 4

• **Claim 4**: At the end of the last iteration, there are at most \sqrt{n} components

• **Proof**: By induction on i: at the end of iteration i, all components are of size at least 2^i.

• **Base case**: for $i=0$ all components are of size 1.
Analysis – Claim 4

• **Claim 4:** At the end of the last iteration, there are at most \sqrt{n} components.

• **Induction hypothesis:** at the end of iteration $i-1$, all components are of size at least 2^{i-1}.

• **Induction step:** in iteration i, every old component of size at most 2^{i-1} connects to at least one other old component, creating a new component of size at least $2 \cdot 2^{i-1} = 2^i$.

Keren Censor-Hillel, Spring 2017
Analysis – Claim 5

• **Claim 5**: At the end of the last iteration, if there are k components with maximal diameter D_{max}, then line 9 completes in $O(D+D_{\text{max}}+k)$ rounds.

• **Proof**: We need D_{max} rounds to have an ID for each component, and then we can implement the BFS-based $O(D+k)$-round algorithm.
MST in CONGEST

- **BFS-based** algorithm in $O(n)$ rounds
- **GHS algorithm** in $O(n\log n)$ rounds
- **GKP algorithm** in $O(\sqrt{n}\log^* n + D)$ rounds

Question: D is necessary. What about \sqrt{n}?