236358
Distributed Graph Algorithms

Spring 2017
Class by Keren Censor-Hillel
Asynchronous model

• No timing guarantees on delivery of messages

• **Complexity measures:**
 – Number of messages
 – Time: worst case number of time units assuming each message takes at most single unit

• **Reminder:** We saw two asynchronous algorithms for constructing a BFS tree
Synchronizers

• Designing algorithms for synchronous systems is easier
 – Synchrony improves predictability

• Can we construct a simulator, to which we feed a synchronous algorithm, and we get an asynchronous algorithm?

• Such a simulator is called a synchronizer.
Synchronizers – Take I

Send \((r+1)\)-message after receiving all round-\(r\) messages

\(v\) will wait forever if \(u\) never sends a round-\(r\) message

Sending an empty message increases message complexity
Synchronizers – Formal

• Requirements from a synchronizer SYNCH:

 – Given a synchronous algorithm S, SYNCH produces an asynchronous algorithm A

 – For every execution π_S of S on a graph G with inputs IN, A produces an execution π_A of A
Synchronizers – Formal

• Every node v maintains a \textit{round} r_v variable

• The local state of any local variable X_v in π_A when $r_v = r$ is the same as its local state at the beginning of round r in π_S
Synchronizers – Formal

• The original message sent/received by v to w in π_A when $r_v = r$ is the same as the message it sends/receives in round r of π_S

• The output of v in π_A is the same as its output in π_S
Synchronizers - Complexity

• The synchronizer SYNCH may perform some setup stage, requiring $M_{\text{init}}(\text{SYNCH})$ messages and $T_{\text{init}}(\text{SYNCH})$ time.

• Every round requires $M_{\text{round}}(\text{SYNCH})$ messages and $T_{\text{round}}(\text{SYNCH})$ time.
Synchronizers - Complexity

- The message and time complexities of the asynchronous algorithm A are:

$$M(A) \leq M_{\text{init}}(\text{SYNCH}) + M(S) + T(S) \cdot M_{\text{round}}(\text{SYNCH})$$

$$T(A) \leq T_{\text{init}}(\text{SYNCH}) + T(S) \cdot T_{\text{round}}(\text{SYNCH})$$
Synchronizers – Take I

Send \((r+1)\)-message after receiving all round-\(r\) messages

\(v\) will wait forever if
\(u\) never sends a round-\(r\) message

Sending an empty message increases message complexity

\[M_{\text{round}}(\text{SYNCH}) = O(m) \]
\[T_{\text{round}}(\text{SYNCH}) = O(1) \]
Synchronizers

<table>
<thead>
<tr>
<th>Synchronizer</th>
<th>$M_{\text{round}}(\text{SYNCH})$</th>
<th>$T_{\text{round}}(\text{SYNCH})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty messages</td>
<td>$O(m)$</td>
<td>1</td>
</tr>
</tbody>
</table>
Synchronizers – Acks

Sending ACKs:

- \(v \) sends its messages to neighbors
- Neighbors send ACKs to \(v \)
- \(v \) informs receiving all ACKs (\(v \) is safe)
- \(v \) sends round-(\(r+1 \)) messages when all neighbors are safe
Synchronizers – Acks

• **Correctness**: If \(v \) receives a *safe* message from every \(u \) in \(N(v) \), then every such \(u \) received an ACK from all nodes in \(N(u) \) to which it sent messages.

• In particular, for every \(u \) in \(N(v) \), either \(v \) received the message from \(u \), or \(u \) did not send any message to \(v \).
Synchronizers – Acks

• Hence, when v sends messages for the next round, it has a correct state from the previous round.
Synchronizers – Acks

- **Complexity**: Still need a (safe) message from every neighbor
- Message overhead is $M_{\text{round}}(\text{SYNCH}) = O(m)$
- Time overhead is $T_{\text{round}}(\text{SYNCH}) = O(1)$
Synchronizers

<table>
<thead>
<tr>
<th>Synchronizer</th>
<th>$M_{\text{round}}(\text{SYNCH})$</th>
<th>$T_{\text{round}}(\text{SYNCH})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty messages</td>
<td>$O(m)$</td>
<td>1</td>
</tr>
<tr>
<td>ACKs + safe</td>
<td>$O(m)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Synchronizers – Spanning tree

E_T is a rooted spanning tree
- Nodes send messages and ACKs
- A leaf u sends a *safe* message to its parent after receiving all ACKs
- An inner node send a *safe* message to its parent after receiving all ACKs AND all *safe* messages from its children
Synchronizers – Spanning tree

E_T is a rooted spanning tree

- Root sends **all_safe** message down the tree after receiving all ACKs AND all **safe** messages from children
Synchronizers – Spanning tree

- **Correctness**: By induction: If u receives a safe message from every child in E_T, then every node w in the subtree of u received an ACK from all nodes in $N(w)$ to which it sent messages.
Synchronizers – Spanning tree

- Hence, when the root \(v \) sends the *all_safe* message, all nodes have received ACKs, and so all nodes have received the messages sent to them.

- Thus, for the next round, all nodes have a correct state from the previous round.
Synchronizers – Spanning tree

• **Complexity**: safe and all_safe messages are sent only on edges of E_T
• Message overhead is $M_{round}(SYNCH) = O(n)$
• But the time costs as the depth of the tree
• Time overhead is $T_{round}(SYNCH) = O(\text{depth}(E_T))$
Synchronizers

<table>
<thead>
<tr>
<th>Synchronizer</th>
<th>$M_{\text{round}}(\text{SYNCH})$</th>
<th>$T_{\text{round}}(\text{SYNCH})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty messages</td>
<td>$O(m)$</td>
<td>1</td>
</tr>
<tr>
<td>ACKs + safe</td>
<td>$O(m)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Spanning tree E_T</td>
<td>$O(n)$</td>
<td>$O(\text{depth}(E_T))$</td>
</tr>
</tbody>
</table>

Keren Censor-Hillel, Spring 2017
Spanners

• Given $G=(V,E)$ and E_S in E, a subgraph $S=(V,E_S)$ is called a **k-spanner** of G if:
 – For every u,v in V:
 $$\text{dist}_S(u,v) \leq k \cdot \text{dist}_G(u,v)$$

• k is called the **stretch** of the spanner
Synchronizers – Spanners

E_S is a k-spanner with m_S edges

• Nodes send messages and ACKs

• After receiving all ACKs, repeat for k iterations:
 – Send safe messages in the spanner
 – Wait for safe messages in the spanner

2-spanner
Synchronizers – Spanners

• **Correctness:** For every node v, by induction, after iteration t, every node u such that $\text{dist}_{ES}(u,v) \leq t$ has received all ACKs.

• Base case, $t=0$: v received all ACKs

• **Induction hypothesis:** after iteration $t-1$, every node u such that $\text{dist}_{ES}(u,v) \leq t-1$ has received all ACKs.
Synchronizers – Spanners

- **Induction step**: Every node u such that $\text{dist}_{\text{ES}}(u,v) = t$ has a w in $\text{N}_{\text{ES}}(v)$ for which $\text{dist}_{\text{ES}}(w,u) = t-1$.

- When v receives a *safe* message from w in iteration t, then by the induction hypothesis for w, u has received all ACKs.
Synchronizers – Spanners

• For every neighbor w in $N(v)$, it holds that $\text{dist}_{ES}(w,v) \leq k$, because E_S is a k-spanner.

• After k iterations, every w in $N(v)$ has received all ACKs, so v received all the messages sent to it.
Synchronizers – Spanners

- **Complexity**: Every round requires k iterations, in each iteration a message is sent on every spanner edge.
 - $M_{\text{round}}(\text{SYNCH}) = O(km_s)$
 - $T_{\text{round}}(\text{SYNCH}) = O(k)$
Synchronizers

<table>
<thead>
<tr>
<th>Synchronizer</th>
<th>$M_{\text{round}}(\text{SYNCH})$</th>
<th>$T_{\text{round}}(\text{SYNCH})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty messages</td>
<td>$O(m)$</td>
<td>1</td>
</tr>
<tr>
<td>ACKs + safe</td>
<td>$O(m)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Spanning tree E_T</td>
<td>$O(n)$</td>
<td>$O(\text{depth}(E_T))$</td>
</tr>
<tr>
<td>k-spanner E_S</td>
<td>$O(km_S)$</td>
<td>$O(k)$</td>
</tr>
</tbody>
</table>
Constructing a Spanner from a Synchronizer

SYNCH is a synchronizer

Mark all edges used

Information has to pass between each pair of neighbors

Gives a spanner S with $m_S \leq M_{\text{round}}(\text{SYNCH})$ and $k \leq T_{\text{round}}(\text{SYNCH})$