236358
Distributed Graph Algorithms

Spring 2017
Class by Keren Censor-Hillel
The course

- **Class**: Wednesdays 10:30-12:30, Taub 4
- **Office hours**: Wednesdays 9:30-10:30, Taub 516
- **TA**: Seri Khoury

- **Prerequisites**: Data Structures, Introduction to Algorithms, Probability Theory

- **Grade structure**: 3 home assignments, final project

- **Book**: Distributed Computing: A Locality-Sensitive Approach
 David Peleg, SIAM 2000
What is distributed computing?

- Multiple **computing components** which **communicate** in order to perform some computation
 - Communication networks
 - Multicore computers

- Characterized by the absence of central control
Computing models

• First task: model the system

• Describe the computation as it happens in reality, but avoid details that are specific
 – Finite state machines
 – Turing machines
Distributed graph algorithms

• n computing components
• Communication: sending messages along links

• Model:
 – Communication links described as a graph G
 – The topology of G is unknown to the nodes
 – Typical knowledge of a node v:
 • A polynomial bound on the number of nodes n
 • The identities of its neighbors $N(v)$
Assumptions

- **Message length**: unbounded/bounded
- **Timing**: synchronous/asynchronous
- **Knowledge**:
 - The number of nodes n
 - The maximal degree in the graph Δ
Complexity measures

• Basic underlying assumption:

 Communication is more expensive than local computation

• We typically measure communication
 – Number of communication rounds (synch)
 – Number of messages sent
 – Number of bits sent
Uncertainty

• Various additional aspects of distributed computing to be discussed depending on time
 – Faulty nodes or links
 – Dynamic changes to the network topology
 – Noise

• These characterize real systems and show the limited control we have over the computation
Model

- **Synchronous** system. **Complexity**: number of rounds
- In each round:
 - **LOCAL**
 - node v can send messages to every node in $N(v)$
 - **CONGEST**
 - node v can send messages of $O(\log n)$ bits to every node in $N(v)$
 - Motivation: sending an ID in a single message
A BFS tree

• Breadth-First Search Tree
 – Input: a root r
 – Output: a tree of shortest paths to r

• Distributed setting:
 – Input to node v: indication whether v is r
 – Output: $d(v,r)$ and parent in the BFS tree
 • No knowledge of the entire tree is required
A BFS algorithm

Variables for node v:
- $\text{state} \in \{\text{activated, deactivated}\}$, initially deactivated, except for $v = r$
- parent, initially v
- dist, initially ∞, except for $v = r$, initially 0

1 for $i=1, \ldots$ do
2
3
4
5 else
6
7
8
9

Keren Censor-Hillel, Spring 2017
Correctness

• **Claim 1**: There is a BFS tree T rooted at r, such that after the algorithm runs, for each node v:
 – $\text{parent}(v)$ is set to the parent of v in T
 – $\text{dist}(v)$ is set to $d(v,r)$

• **Observation**: a node gets activated at most once
 – Because it becomes activated only when the condition in line 7 holds (the first message is received), which can happen only once.
Claim 1: parent(v) is set to the parent of v in T
dist(v) is set to d(v,r)

Proof:
• We prove the following by induction over the rounds. We show that each node that is activated in round i produces the correct distance and parent in round i – 1, and that all nodes in distance i – 1 are indeed activated in round i.
Claim 1: parent(v) is set to the parent of v in T

dist(v) is set to d(v, r)

Proof:

• The base case: this is for round 1, where only r is activated. Its parent does not change and it outputs distance 0 before the execution begins. Its message reaches all nodes within distance 1 and only them, and so they become activated for the next round.
Claim 1: parent(v) is set to the parent of v in T
 dist(v) is set to d(v,r)

Proof:
• Induction hypothesis: Assume that every node in distance i − 1 from r is activated in round i, and that for every node that is activated in round i, its distance from r is i − 1 and its parent points to a neighbor in distance i − 2.
Claim 1: \(\text{parent}(v) \) is set to the parent of \(v \) in \(T \)
\(\text{dist}(v) \) is set to \(d(v,r) \)

Proof:

• **Induction step:** Let \(v \) be a node in distance \(i \), then \(v \) is activated in round \(i + 1 \) because it has a neighbor \(w \) within distance \(i - 1 \). By the induction hypothesis \(w \) is activated in round \(i \) and so \(v \) receives its message and becomes activated for round \(i + 1 \).
Claim 1: \(\text{parent}(v)\) is set to the parent of \(v\) in \(T\)
\(\text{dist}(v)\) is set to \(d(v,r)\)

Proof:

• Further, it means that \(v\) updates its parent to some node within distance \(i - 1\), and outputs distance \(i\) in the previous round.

• It remains to show that the other direction also holds, that is, if \(v\) is activated in round \(i + 1\) then indeed its distance is \(i\). This is because if it is activated then it is because it receives a message from some \(w\) in round \(i\), and by the induction hypothesis the distance of \(w\) is \(i - 1\).
Complexity

• **Claim 2**: The number of rounds is $O(D)$

• **Notation**: D is the diameter of the graph

• **Proof**: By Claim 1, a node in distance i from r completes after i rounds, and hence the number of rounds is the depth of T, which is $O(D)$.
Lower bound

• **Claim 3**: Every synchronous BFS algorithm requires $\Omega(D)$ rounds.

• Intuitively, this is because a node within distance D from the root r can find it out only after D rounds.
The Local Claim

- **The Local Claim**: After i rounds, a node cannot know anything about nodes that are within distance j > i from it.

- **Proof**: We prove this by induction.

- **The base case**: For i = 0, indeed before the algorithm starts every node knows only about itself.

- **Induction hypothesis**: In i − 1 rounds every node does not know anything about nodes that are farther than i − 1 hops away.

- **Induction step**: Therefore, in the i-th round, a node can only hear from its neighbors, which only know about their i − 1 neighborhood, and therefore the node only know about its i neighborhood.
Lower bound

• **Claim 3**: Every synchronous BFS algorithm requires $\Omega(D)$ rounds.

• **Proof**: We use an indistinguishability argument:

 • Let v be a node within distance D from r. Consider a graph G', which has one other node r' that is connected to r and is the root of a BFS we want to build in G'. The distance of every node u from r' in G' is larger by one compared with its distance to r in G.

 • By **The Local Claim**, in less than D rounds, v cannot distinguish between G and G', and so must output the same distance. But for one of these graphs this is incorrect.
Lower bound

• **Illustration**: Every synchronous BFS algorithm requires $\Omega(D)$ rounds.

• **Note**: It is also possible to find G and G' with the same number of nodes.