A. Distributed algorithms

Example 1: synchrony

Exercise 1: find a trade-off between no. of days and no. of presidents.

Example 2: leader election

message passing
asynchronous

Exercise 2: find a better algorithm to find the maximum, prove correctness and analyze performance.
Example 3: faults

Impossibility of consensus

The Byzantine Generals Problem

Example 4: snapshot
B. Self Stabilization

Example 5: Unison (stabilizing clocks)

Program at each processor p:
choose a neighbor x of p;
if $t(p) = t(x)$ then $t(p) := t(p) + 1$;

Stabilizing if all start with the same time, however …

Is it stabilizing? no! (may even deadlock)
Program at each processor p:

choose a neighbor x of p:

if $t(p) = t(x)$ then $t(p) := t(p)+1$;

 if $t(p) < t(x)$ then $t(p) := t(x)$;

Is it stabilizing?
Program at each processor p:

choose c fairly; or x of p

if $t(p) = t(x)$ then $t(p) := t(p) + 1$;
if $t(p) < t(x)$ then $t(p) := t(x)$;

Is it stabilizing? yes!

Exercise 3: prove and analyze time until stabilization.

C. Optical networks

- **lightpaths**
- **Valid coloring**

$w(p_1) \neq w(p_2)$

Saving a switch:
Example 6: min ADMs

Exercise: prove NP=hardness

Example 7: min ADMs w/grooming

g=2

15
Input: a graph and a set of paths
Output:
• a valid coloring
• a valid coloring with minimum number of ADMs (number of colors can be a parameter)
 • a valid coloring with minimum number of ADMs, given a grooming factor (number of colors can be a parameter)

Problems

Objective function:
Minimize the number of ADMs

Cases:
 w/out grooming (g = 1)
 w/ grooming (g > 1)

Questions:
 Complexity?
 Approximability?

Example 8: approximation algorithms

Objective function:
Minimize the number of ADMs

Cases:
 w/out grooming (g = 1)
 w/ grooming (g > 1)

Questions:
 Complexity?
 Approximability?

N: # of paths.
ALG: # of ADMs used by the algorithm.
OPT: # of ADMs used by an optimal solution.
ALG ≤ 2N
N ≤ OPT
ALG/OPT ≤ 2N/N=2
 with grooming:
 ALG/OPT ≤ 2 g
Example 9: min regenerators

\[d=2, \quad g=1 \]

set \(A = 3 \) \quad set \(B = 1 \)

set \(A \) and set \(B = 4 \)
Input arrives one at a time, and a decision is made (and cannot be changed).

In the minADM problem: lightpaths arrive one at a time, and need to be colored.

Competitive analysis

An on-line algorithm A is c-competitive if $A(I) \leq c \cdot OPT(I)$ for any input sequence I. ($A(I)$ and $OPT(I)$ are #ADMs used by A and by an optimal offline algorithm OPT.)

Example 10: on-line algorithms

Case a: $\frac{7}{4} = 1.75$

Any algorithm $\geq \frac{7}{4}$, even for a ring
Case b:
Case b1: 6/3 = 2
Case b2: 5/3 = 1.67

any algorithm ≥ 1.67

Exercise: prove any algorithm ≥ 1.75

any algorithm for a path ≥ 3/2

k paths

k-1 spaces:
x between same color
k-1-x between different colors

So far: any algorithm uses 2k ADMs

now - a short path at each gap of different color
k=12, x=6, 12-1-6=5

Any algorithm uses at least one more ADM for each (ALG uses exactly one)

So: any algorithm ≥ 2k + (k-1-x) ADMs
So far: use $\geq 2k \cdot (k-1-x)$ ADMS

now - two long paths at each of the k gap of same color

Any algorithm must use 2 ADMs for each

So: any algorithm $\geq 2k \cdot (k-1-x) + 4x = 3k + 3x - 1$ ADMs

We showed: any algorithm uses $\geq 3k + 3x - 1$ ADMs

2 k ADMS

OPT: the short paths $\leq 2k$ ADMs

for the long paths $\leq 2x$ ADMs

OPT $\leq 2k + 2x$

any algorithm/OPT $\geq 3/2 - 1/(2k)$

D. ATM networks

Virtual path

Virtual channel

load = 3

(same)

hop count = 3 (space)

stretch factor = 4/3
Given a network, find an “Optimal Layout” such that:

(A) Given an upper bound on the hop count, minimize the load.

N=7, Max hop count 1 => Min load 6

(B) Given an upper bound on the load, minimize the hop count.

N=7, Max load 1 => Min hop count 6

l = 3 h = 2 f(3,2) = 10
Exercise 4: how many points can you connect, given l and h?
Example 12: Decision problems

Input: Graph G, a vertex v, h, $\ell > 0$.

Question: is there a VP layout for G, by which v can reach all other nodes, with hop count bounded by h and load bounded by ℓ?