יחסים ומשפט נרוד

תרגיל מספר 8

תזכורת – יחסים שקילון

יחס שקילות \(R \) על קבוצת \(A \) הוא יחס שקיליím:

רפלקסיביות:

\((\forall x, xRx) \)

סימטריות:

\((\forall x, y, xRy \Rightarrow yRx) \)

טרנזיטיביות:

\((\forall x, y, z, xRy \land yRz \Rightarrow xRz) \)

יחס כזה משרה חלוקה לקבוצת יחסים שקילים \(R \)

תזכורת – יחסים אפיונים

הגדרה:

عبر שפה \(R_L \) ממוגדר כ:

\(xR_L y \iff (\forall z \in \Sigma^*, zx \in L \Rightarrow yz \in L) \)

משפט האפיונים:

アジア \(R_L \) הוא יחס שקילות אופייניים במיתי.

\(L \) תח.

アジア \(R_L \) ממוגד altogether

\(L \) שני יחסים שקילות אופייניים במיתיים המתחדשים

アジア \(R_L \) ממוגד altogether

© יעל מלר
דוגמה א' עבורה השפה \(L = L' \begin{bmatrix} ba' \end{bmatrix} \) עבורה לוג אט הוא באניה הנותנת מחלקות שקילות של \(R_L \):

\[
\begin{align*}
(aa, ab) \\
(ba, baa) \\
(bab, baa) \\
(\varepsilon, a)
\end{align*}
\]

(המשך) דוגמה א' מהן מחלקות השקילות של \(R_L \)? נשים לב \(L \) מורכב ממספר מחלקות שקילות של \(R_L \):

נמסח \(L = S_2 \cup S_1 \) \(R_L \) שלמות של \(\sum \):

\[
\begin{align*}
index(R_L) = 4 \\
\text{מסח:}
\end{align*}
\]

(המשך) דוגמה א' ניתן לבנות אוטומט המקבל את \(L \) בעל 4 מצבים:

- מצב יסודי - מצב מהמותת השתיות.
- מצבו המקבל - מחלקות שקילות ממולאות ב- \(R_L \).
- מצב התחלתי - מחלקות השתיות המוכילות את \(\varepsilon \).
משפט נרוד:

1. תהי \(L \subseteq \Sigma^* \) רגולרית ו-
2. \(\forall R \subseteq \Sigma^* \times \Sigma^* \) יחס שקילות \(R \) יגמורני, ממוצע \(C \) ש-
3. \(-C \) ממעון \(R \) \(L \) זה \(\text{index}(R) \) \(L \) \(\text{index}(R) \).

\(\text{index}(R \times L) \) סופי.

לעב מתמטיקה: \(\text{Index}(R) \) סופי, ולו \(L \) \(R \), \(R \) \(R \' \).
דוגמה ג' (משהר)

מחלקות השקילות של \(R_L \) עבור \(L \):

\[
\forall i, -k \leq i \leq k : S_i = \left\{ w \mid \#_a(w) - \#_i(w) = i \right\}
\]

综合利用רומא יש כל רישא של \(w \) עם:\n
\[
\| \#_a(\alpha) - \#_i(\alpha) \| \leq k
\]

\[S_{out} = \left\{ w \mid \#_a(\alpha) - \#_i(\alpha) > k \right\} \]

לעמעת ללוכייה שאם \(R_L \) יש לרוב של \(w \) בנייה \(w \) במספר \(x \):

\[
x, y \in S_{out} \Rightarrow xR_L y \Rightarrow \alpha \exists \beta \in \Sigma \end{equation}

לכל \(x \) \(y \) \(z \) \(\in \Sigma \): \(xz \in L \wedge yz \notin L \Rightarrow xR_L y \]
(המשר) דוגמה ג

: \(x, y \in S \)

נניח: בשילול השם מפרידה \(z \in \mathcal{S} \). \(\forall z \in L \), \(yz \notin L \).

בכל \(i \geq 0 \) יש \(\beta \) של \(y \), \(\forall i \leq k \):

\[
\begin{align*}
& \left\| \beta - \beta' \right\| \leq k \\
& \left\| \#_0(x) - \#_1(x) \right\| = \left\| \#_0(x) - \#_1(x) \right\| = k + 1 > k \\
& \Rightarrow \ xz \notin L \\
& \left\| \beta - \beta' \right\| > k \\
& \left\| \#_0(yz) - \#_1(yz) \right\| = \left\| \#_0(y) - \#_1(y) + \#_0(z) - \#_1(z) \right\| = j + (k - i + 1) = k - (i - j) + 1 \\
& \Rightarrow yz \notin L \\
& \text{לכל \(i \geq 0 \)}.
\end{align*}
\]

בנוסף, לכל \(y \in L \).

(המשר) דוגמה ג

: \(yz \in \mathcal{S} \)

נניח: בשילול השם מפרידה \(z \in \mathcal{S} \). \(\forall z \in L \), \(yz \notin L \).

בכל \(i \geq 0 \) יש \(\beta \) של \(y \), \(\forall i \leq k \):

\[
\begin{align*}
& \left\| \beta - \beta' \right\| \leq k \\
& \left\| \#_0(x) - \#_1(x) \right\| = \left\| \#_0(x) - \#_1(x) \right\| = k + 1 > k \\
& \Rightarrow \ xz \notin L \\
& \left\| \beta - \beta' \right\| > k \\
& \left\| \#_0(yz) - \#_1(yz) \right\| = \left\| \#_0(y) - \#_1(y) + \#_0(z) - \#_1(z) \right\| = j + (k - i + 1) = k - (i - j) + 1 \\
& \Rightarrow yz \notin L \\
& \text{לכל \(i \geq 0 \)}.
\end{align*}
\]

בנוסף, לכל \(y \in L \).

(המשר) דוגמה ג

: \(j < i \), \(x \in S \), \(y \in S \)

נניח: בשילול השם מפרידה \(i \leq j \) כל \(i \geq 0 \).

בכל \(i \geq 0 \) יש \(\beta \) של \(x \), \(\forall i \leq k \):

\[
\begin{align*}
& \left\| \beta - \beta' \right\| \leq k \\
& \left\| \#_0(x) - \#_1(x) \right\| = \left\| \#_0(x) - \#_1(x) \right\| = k + 1 > k \\
& \Rightarrow \ xz \notin L \\
& \left\| \beta - \beta' \right\| > k \\
& \left\| \#_0(yz) - \#_1(yz) \right\| = \left\| \#_0(y) - \#_1(y) + \#_0(z) - \#_1(z) \right\| = j + (k - i + 1) = k - (i - j) + 1 \\
& \Rightarrow yz \notin L \\
& \text{לכל \(i \geq 0 \)}.
\end{align*}
\]

בנוסף, לכל \(y \in L \).