SAT-Based Model Checking:
IC3 and Lazy Abstraction

Verification course,
Lecture 12, June 23, 2015
Incremental Construction of Inductive Clauses for Indubitable Correctness

or simply: IC3
A Simplified Description

“SAT-Based Model Checking without Unrolling”, Aaron Bradley, VMCAI 2011
Notations

• System is modeled as \((V, I, T)\), where:
 - \(V\) is a finite set of variables
 - \(I \subseteq 2^V\) is the set of initial states
 - \(T \subseteq 2^V \times 2^V\) is the set of transitions

• A safety property of the form \(AG P\)
 - \(P\) is a propositional formula over \(V\)
Induction for proving AG P

• The simple case: P is an inductive invariant
 - I ⇒ P
 - P ∧ T ⇒ P′

• Notation: P′ - the value of P in the next state

• I(V) ⇒ P(V)
• P(V) ∧ T(V, V′) ⇒ P(V′)
Induction for proving $AG\; P$

- Usually, P is not an inductive invariant
- BUT - a stronger inductive invariant R may exist (strengthening)
 - $I \Rightarrow R$
 - $R \land T \Rightarrow R'$
 - $R \Rightarrow P$
- R can be computed in various ways (BDDs, k-induction, Interpolation-Sequence,...)
Inductive invariant
The Goal: Find an Inductive Invariant stronger than P by learning relatively inductive facts (incrementally)

- Recall: F is inductive invariant if
 - $I \Rightarrow F$
 - $F \land T \Rightarrow F'$
- If F is stronger than P, i.e., $F \Rightarrow P$, then
 - $F \land P \land T \Rightarrow F' \Rightarrow P'$
What Makes IC3 Special?

- **No unrolling** of the transition relation T is required

- All previous approaches require unrolling
 - Searching for an inductive invariant
 - Unrolling = A form of strengthening

- **IC3 strengthens in a different way**
 - Learning relatively inductive facts locally
IC3 Basics

• Iteratively compute Over-Approximated Reachability Sequence (OARS) \(<F_0,F_1,\ldots,F_k>\) s.t.

 \[\begin{align*}
 & F_0 = \text{INIT} \\
 & F_i \implies P \quad : \text{P is an invariant up to } k \\
 & F_i \implies F_{i+1} \quad : \text{F}_i \subseteq \text{F}_{i+1} \\
 & F_i \land T \implies F'_{i+1} \quad : \text{Simulates one forward step}
 \end{align*}\]

 \[F_i\] - over-approximates the set of states reachable within \(i\) steps

• If \(F_{i+1} \Rightarrow F_i\) then \text{fixpoint}
IC3 Basics

• P is inductive relative to F if
 - I \implies P
 - F \land P \land T \implies P'

• Notations:
 - Cube s: conjunction of literals
 - \nu_1 \land \nu_2 \land \neg \nu_3 - Represents a state
 - s is a cube \implies \neg s is a clause (DeMorgan)
OARS

\[R_1 = I \lor \text{Img}(I,T) \]
\[R_2 = R_1 \lor \text{Img}(R_1,T) \]
A Backward Search

• Search for a predecessor s to some error state: $P \land T \land \neg P'$
 - If none exists, property P holds:
 • $(P \land T \land \neg P') \text{ unsat IFF } (P \land T \Rightarrow P') \text{ valid}$

• Otherwise, try to block s
 - $P = P \land \neg s$
 - BUT, first need to show the s is not reachable
IC3 - Initialization

• Check satisfiability of the two formulas:
 - \(I \land \neg P \)
 - \(I \land T \land \neg P' \)

• If both are unsatisfiable then:
 - \(I \Rightarrow P \)
 - \(I \land T \Rightarrow P' \)

• Therefore
 - \(F_0 = I, F_1 = P \)
 • \(\langle F_0, F_1 \rangle \) is OARS
IC3 - Initialization
IC3 - Iteration

- Our OARS contains \(F_0 \) and \(F_1 \)
 - If \(P \) is an inductive invariant - done! 😊
 - Otherwise:
 - \(F_1 \) should be strengthened
IC3 - Iteration

- P is not an inductive invariant
 - $F_1 \land T \land \neg P'$ is satisfiable
 - From the satisfying assignment get the state s that can reach the bad states
IC3 - Iteration

- Is s reachable or not?
 - Hard to know
 - If it is reachable a CEX exists
 • Why?
IC3 - Iteration

- Is s reachable in one transition from the previous set? (Bounded reachability)
 - Check $F_0 \land T \land s'$
 - If satisfiable, s is reachable from F_0 (CEX)
 - Otherwise, block it = remove it from F_1
 - $F_1 = F_1 \land \neg s$
IC3 - Iteration

• Iterate this process until $F_1 \land T \land \neg P'$ becomes unsatisfiable
 - $F_1 \land T \Rightarrow P'$ holds
 - F_2 can be defined to be P
 • Any problems/issues with that?
IC3 - Iteration

• New iteration, check $F_2 \land T \land \neg P'$
 - If satisfiable, get s that can reach $\neg P$
 - Now check if s can be reached from F_1 by $F_1 \land T \land s'$
 - If it can be reached, get t and try to block it
IC3 - Iteration

- To block t, check $F_0 \land T \land t'$
 - If satisfiable, a CEX
 - If not, t is blocked, get a "new" t by $F_1 \land T \land s'$
 - If it can be reached, get t^* and try to block it
 -You get the picture 😊
General Iteration
IC3 - Iteration

• Given an OARS \(<F_0,F_1,\ldots,F_k,>\), define \(F_{k+1}=P\)
• Apply a backward search
 - Find predecessor \(s\) in \(F_k\) that can reach a bad state
 • Check \(F_k \land T \land \neg P'\)
 - If none exists \((F_k \land T \Rightarrow P')\), move to next iteration
 - If exists, try to find a predecessor \(t\) to \(s\) in \(F_{k-1}\)
 • \((F_{k-1} \land T \land s')\)
 - If none exists \((F_{k-1} \land T \Rightarrow \neg s')\), \(s\) is removed from \(F_k\)
 • \(F_k = F_k \land \neg s\)
 - Otherwise: Recur on \((t,F_{k-1})\)
 • We call \((t,k-1)\) a proof obligation
• If we can reach I, a CEX exists
That Simple?

- Looks simple
- But this “simple” solution does NOT work
- It amounts to States Enumeration
 - Too many states...
- Does IC3 enumerate states?
 - In general - No.
 - It applies generation for removing more than one state at a time
 - Sometimes, yes (when IC3 does not perform well)
Generalization

Consider the case:

• State s in F_k can reach a bad state in one transition

• s in not reachable (in k transitions):
 - Therefore $F_{k-1} \land T \Rightarrow \neg s'$ holds

• We want to generalize this fact
 - s is a single state
 - Goal: Find a set of states, unreachable in k transitions
Generalization

• We know $F_{k-1} \land T \Rightarrow \neg s'$
• And, $\neg s$ is a clause
• Generalization: Find a sub-clause $c \subseteq \neg s$ s.t.
 $F_{k-1} \land T \Rightarrow c'$
 - Sub clause means less literals
 - Less literals implies less satisfying assignments
 • $(a \lor b \lor c)$ vs. $(a \lor b)$
 - $c \Rightarrow \neg s$ - c is a stronger fact
• $F_k = F_k \land c$
 - More states are removed from F_k, making it
 stronger/more precise (closer to R_k)
Generalization

• How do we find a sub-clause $c \subseteq \neg s$ s.t. $F_{k-1} \land T \Rightarrow c'$?

• Trial and Error
 - Try to remove literals from $\neg s$ while $F_{k-1} \land T \land \neg c'$ remains unsatisfiable

• Use the UnSAT Core
 - $F_{k-1} \land T \land s'$ is unsatisfiable
Observation 1

• Assume a state s in F_k can reach a bad state in one transition
• Important Fact: s is not in F_{k-1} (!!!)
 - $F_{k-1} \land T \Rightarrow F_k$
 - $F_k \Rightarrow P$
 - If s was in F_{k-1} we would have found it in an earlier iteration
• Therefore: $F_{k-1} \Rightarrow \neg s$
Inductive Generalization

• Assume a state s in F_k can reach a bad state in one transition

• Assume s is not reachable (in k transitions):
 - We get $F_{k-1} \land T \Rightarrow \neg s'$ holds

• BUT, this is equivalent: $F_{k-1} \land \neg s \land T \Rightarrow \neg s'$
 - Since $F_{k-1} \Rightarrow \neg s$

• This looks familiar!
 - $I \Rightarrow \neg s$
 - Otherwise, CEX! ($I \not\Rightarrow \neg s \iff s$ is in I)
 - $\neg s$ is inductive relative to F_{k-1}
Inductive Generalization

• Find \(c \subseteq s \) s.t.
 \(F_{k-1} \land c \land T \Rightarrow c' \) and \(I \Rightarrow c \) hold

• Define \(F_k^* = F_k \land c \)

• Since \(F_i \Rightarrow F_{i+1} \),
 \(c \) is inductive relative to \(F_{k-1}, F_{k-2}, \ldots, F_0 \)
 - Add \(c \) to all of these sets
 - \(F_i^* = F_i \land c \)

• \(F_i^* \land T \Rightarrow F_{i+1}^* \) hold
Observation 2

• Assume a state s in F_i can reach a bad state in a number of transitions
• s is also in F_j for $j > i$, since $F_i \Rightarrow F_j$
• A longer CEX may exist
 - s may not be reachable in i steps, but it may be reachable in j steps
• If s is blocked in F_i, it must be blocked in F_j for $j > i$
 - Otherwise, a CEX exists
Push Forward
Push Forward - summary

• s is removed from F_i
 - by conjoining a sub-clause c:
 \[F_i = F_i \land c \]

• c is a clause learnt at level i
 Try to push it forward to $j \geq i$
 - If $F_j \land T \implies c'$ holds
 • c is implied by F_j in level $j+1$,
 \[F_{j+1} = F_{j+1} \land c \]
 - Else: s was not blocked at level $j > i$
 • Add a proof obligation (s,j)
 • If s is reachable from I, CEX!
IC3 - Key Ingredients

- **Backward Search**
 - Find a state s that can reach a bad state in a number of steps
 - s may not be reachable (over-approximations)

- **Block a State**
 - Do it efficient, block more than s
 - Generalization

- **Push Forward**
 - An inductive fact at frame i may also be inductive at higher frames
 - If not, a longer CEX is found
IC3 - High Level Algorithm

If $I \land \neg P$ is SAT return false; // CEX
If $I \land T \land \neg P'$ is SAT return false; // CEX
OARS = $<I,P>$; // $<F_0,F_1>$
k=1
while (OARS.is_fixpoint() == false) do
 while ($F_k \land T \land \neg P'$ is SAT) do
 s = get_state();
 If (block_state(s, k) == false) return cex; // recursive function
 extend(OARS);
 push_forward();
return valid;
Lazy Abstraction and SAT-Based Reachability (with IC3) in Hardware Model Checking

[Vizel, Grumberg, Shoham 12]
Abstraction

• Fights the state explosion problem
• Removes or simplifies details that are irrelevant

• Abstract model contains less states
• Often - more behaviors
 - Over-approximation
Visible Variables Abstraction
Abstraction-Refinement

• Abstract model may contain spurious behaviors
 – Spurious counterexample may exist

• Refinement is applied to remove the spurious behavior
Lazy Abstraction

• Different abstractions at different steps of verification

• Refinement is applied locally, where needed
Locality in IC3

- **IC3 applies checks of the form**
 - $F_k \land T \land \neg P'$
 - Finds a state in F_k that can reach $\neg P$
 - $F_i \land T \land s'$
 - Finds a predecessor in F_i to the state s

- **Using only one T**
 - No unrolling
Our Approach - L-IC3

• Use IC3's local checks for Lazy Abstraction
 - Different abstraction at different time frames
 - Use visible variables abstraction
 • Different variables are visible at different time frames
Concrete Model

INIT → F_1 → F_{k-1} → F_k
Using Abstraction

INIT $\rightarrow F_1 \rightarrow \cdots \rightarrow F_{k-1} \rightarrow F_k$
Using Lazy Abstraction
Lazy Abstraction + IC3 = L-IC3

- \(\langle F_0, F_1, \ldots, F_k, 1 \rangle \) - Reachable states

- \(\langle U_1, U_2, \ldots, U_{k+1} \rangle \) - Abstractions
 - \(U_i \) - set of visible variables
 - \(U_i \) variables have a next state function
 - The rest, inputs
 - \(U_i \subseteq U_{i+1} \)
 - \(U_{i+1} \) is a refinement of \(U_i \)
L-IC3 Iteration

- Initialize F_{k+1} to P
- Initialize U_{k+1} to U_k
- Same problem, the sequence may not be an OARS
Abstract Counterexample

\[F_i \land T_{i+1} \land s' \]

\[F_k \land T_{k+1} \land \neg P' \]

\[-P \]
Check Spuriousness

- An abstract CEX of length \(k+1 \) exists
- Use an IC3 iteration with the concrete \(T \)
- If a real CEX exists, it will be found
Check Spuriousness (2)

• If no real CEX exists:
 - Compute a strengthened sequence
 \(\langle F_{r_0}, F_{r_1}, \ldots, F_{r_{k+1}} \rangle \)
 • Strengthening by IC3 algorithm
 - The strengthened sequence is an OARS
 - Strengthening eliminates all (real) CEXs of length \(k+1 \)
Lazy Abstraction Refinement

• If no real CEX is found by (concrete) IC3 even though (abstract) L-IC3 strengthening failed
 - Abstraction is too coarse

• Refine the sequence \(<U_1, U_2, \ldots, U_{k+1}>\) as follows:

• Since \(Fr_i \land T \Rightarrow Fr'_{i+1}\)
 - \(Fr_i \land T \land \neg Fr'_{i+1}\) is unsatisfiable
 - Use the UnSAT Core to add visible variables
 • \(Ur_{i+1} = Ui_{i+1} \cup UCore_i\)
Incrementality

• The concrete IC3 iteration works on the already computed sequence \(\langle F_0, F_1, \ldots, F_{k+1} \rangle \)

• At the end of refinement, L-IC3 continues from iteration \(k+2 \)
Experiments - Laziness

Test	#Vars	#TF	#AV											
Ind 2	5693	7-1	31	8	42	9	51	10-14	54					
Ind 3	11866	1	323	2	647	3	686	4	699	5	705			
	6	713	7	714	8	728	9	743						
Ind 5	3854	1	428	2	453	3	495	4	499	5	503			
	6	560	7	574	8	657	9-11	577						
Summary

• Lazy abstraction algorithm for hardware model checking
• Abstraction-Refinement is done incrementally
• We compared our method (L-IC3) to Bradley’s method (IC3)
 - Up to two orders of magnitude runtime improvement
Conclusions

• L-IC3 combines two approaches to fight the state-explosion problem
• L-IC3 exposes and exploits the abstraction, implicit in IC3
Intertwined Forward-Backward Reachability Analysis Using Interpolants

[Vizel, Grumberg, Shoham, TACAS 2013]
Interpolants

- Given an inconsistent pair (A,B) of propositional formulas
- There exists a formula I such that:
 - $A \rightarrow I$
 - $I \land B$ is unsatisfiable
 - I is over the common variables of A and B
- $I = \text{Itp}(A,B)$
Approximated Forward Reachability

• F(V) - a set of states
• For the unsatisfiable formula F(V) ∧ T(V,V') ∧ ¬P(V'), define:
 \[A = F(V) \land T(V,V') \]
 \[B = \lnot P(V') \]
• Approximated forward reachability:
 \[\text{ApxImg}(F,T) = \text{Itp}(A,B) \]
Backward Reachability Analysis

Does AGp hold?

$B_n = \text{PreImg}(B_{n-1}, T)$

$B_2 = \text{PreImg}(B_1, T)$

$B_1 = \text{PreImg}(\neg P, T)$

Bad $= \neg P$
Duality In a SAT Query

- \(\text{INIT}(V) \land T(V,V') \land \neg P(V') \)
- We tend to read it "Forward"
 - From left to right

Do we reach the bad states?
Duality In a SAT Query

- \textbf{INIT}(V) \land T(V,V') \land \neg P(V')

- We tend to read it "Forward"
 - From left to right

- We can also read it "Backward"
 - From right to left
 - Does the pre-image of the bad states intersect the initial states?
Approximated Backward Reachability

- $B(V)$ - a set of states
- For the unsatisfiable formula $\text{INIT}(V) \land T(V,V') \land B(V')$, define:
 \[A = T(V,V') \land B(V') \]
 \[B = \text{INIT}(V) \]

Approximated backward reachability:
$\text{ApxPreImg}(B,T) = \text{Itp}(A,B)$
Dual Approximated Reachability (DAR)

- Compute two sequences of reachable states
 - Forward Sequence: \(<F_0,F_1,\ldots,F_n>\)
 - Backward Sequence: \(<B_0,B_1,\ldots,B_n>\)
- Sequences are over-approximations
 - For the forward sequence:
 - \(F_i(V) \land T(V,V') \rightarrow F_{i+1}(V')\)
 - \(F_i(V) \rightarrow P(V)\)
 - For the backward sequence
 - \(B_{i+1}(V) \leftarrow T(V,V') \land B_i(V')\)
 - \(B_i(V) \rightarrow \neg INIT(V)\)
Dual Approximated Reachability (DAR)

- Two main phases during the computation
 - Local Strengthening
 - No unrolling
 - Global Strengthening
 - Limited unrolling
 - In case the Local Strengthening fails
Dual Approximated Reachability

- Check the formula:
 \[\text{INIT}(V) \land T(V, V') \land \neg P(V') \]

- If SAT then CEX is found
Dual Approximated Reachability

- UNSAT:

\[F_0 = \text{INIT} \]

\[B \]

\[\text{INIT}(V) \land T(V, V') \land \neg P(V') \]

\[A \]

\[B_1 \]

\[B_0 = \neg P \]
Local Strengthening - Intuition

What if F_1 and B_1 intersect each other?

There may be a counterexample
Local Strengthening - Intuition

What if F_1 and B_1 intersect each other?

\[F_1(V) \land T(V, V') \land B_0(V') \]

\[F_0(V) \land T(V, V') \land B_1(V') \]
Local Strengthening - Intuition

- Compute forward and backward interpolants
 - F_2 is the forward interpolant
 - Backward interpolant strengthens the already existing B_1

$$F_1(V) \land T(V, V') \land B_0(V')$$
Local Strengthening - Intuition

- Compute forward and backward interpolants
 - B_2 is the backward interpolant
 - F'_1 is strengthening the already existing F_1

$F_0(V) \land T(V,V') \land B_1(V')$ must be UnSAT
Local Strengthening Fails

$$F_0(V) \land T(V, V') \land B_0(V')$$
Global Strengthening

• Apply unrolling gradually
 – Start from the initial states
 – Try to reach the backward sequence using an increasing number of T’s
Global Strengthening

\[F_0(V) \land T(V, V') \land T(V', V'') \land T(V'', V'''') \land B_1(V''') \land \neg P \]

\[F_0(V) \land T(V, V') \land T(V', V'') \land T(V'', V'''') \land T(V''', V''''') \land B_2(V''''') \land \neg P \]

\[F_0(V) \land T(V, V') \land T(V', V'') \land T(V'', V'''') \land T(V''', V''''') \land B_3(V''''') \land \neg P \]
Interpolation-Sequence

• Given a sequence \(<A_1,\ldots,A_n>\) such that its conjunction is unsatisfiable
• Then, there exists an interpolation sequence \(<I_0,\ldots,I_n>\) such that:
 - \(I_0 = \text{TRUE}, I_n = \text{FALSE}\)
 - \(I_i \land A_{i+1} \implies I_{i+1}\)
 - \(I_i\) is over the common variables of \(A_1,\ldots,A_i\) and \(A_{i+1},\ldots,A_n\)
Global Strengthening

\[F_0(V) \land T(V, V') \land T(V', V'') \land T(V'', V''') \land B_1(V''') \]
Global Strengthening

• If a CEX exists - Full unrolling
• Otherwise, gradually unroll the model
 – Try to reach the Backward sequence
• When the backward sequence is not reachable
 – Extract interpolation sequence
 – Strengthen forward sequence
 – Reapply Local Strengthening
Summary

• Interpolation-based model checking algorithm
• Uses both Forward and Backward traversals
• Two main phases during the computation
 – Local Strengthening
 • No unrolling
 – Global Strengthening
 • Limited unrolling
 • In case the Local Strengthening fails
• Mostly local – No unrolling
 – When unrolling is used, it is restricted
Summary

We presented several methods for SAT-based (unbounded) model checking

- Over-approximate the (forward) reachability analysis
- Apply different methods for making the over-approximation more precise
Thank You
Model checking:

- E.M. Clarke, A. Emerson, Synthesis of Synchronization Skeletons for Branching Time Temporal Logic, workshop on Logic of programs, 1981

- E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT press, 1999
• **BDDs:**

• **BDD-based model checking:**

• **SAT-based Bounded model checking:**
 Symbolic model checking using SAT procedures instead of BDDs,
 A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99
• **Visible variables abstraction:**

• **Lazy abstraction:**
Interpolation based model checking:

- K. McMillan, Interpolation and SAT-Based Model Checking, CAV'03

- T. Henzinger, R. Jhala, R. Majumdar, K. McMillan, Abstractions from Proofs, POPL'04

- Y. Vizel and O. Grumberg, Interpolation-Sequence Based Model Checking, FMCAD'09

- Y. Vizel, O. Grumberg, S. Shoham, Intertwined Forward-Backward Reachability Analysis Using Interpolants, TACAS'13
Model checking with IC3:

- A. Bradley, SAT-based model checking without unrolling, VMCAI’11

- Y. Vizel, O. Grumberg, S. Shoham, Lazy abstraction and SAT-based reachability in hardware model checking, FMCAD’12