Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2015-16
Lecture 12

5.1.16
Other solutions to the state-explosion problem

Small models replace the full, concrete model:

• Abstraction
• Compositional verification
• Partial order reduction
• Symmetry
example

Let M be a communication system in which there are exactly 20 wait steps between a send and an ack

$M::$

$M':$

M' includes all behaviors of M and more:
example

Every path in M has a “representative path” in M'. Therefore, if we prove:

$$M', s_0' \models A(\neg\text{ack } W \text{ send})$$

We can conclude that also:

$$M, s_0 \models A(\neg\text{ack } W \text{ send})$$
example

Since M' has more paths, if $M', s'_0 \not\models AG (send \rightarrow F ack)$

then we cannot conclude that $M, s_0 \not\models AG (send \rightarrow F ack)$

- A counterexample might be spurious
- Refinement might be needed
Equivalences and preorders

Goal: to define

• Preorder between models: \(M_2 \geq M_1 \) s.t.
 \[M_2 \models \varphi \implies M_1 \models \varphi \]

• Equivalence between models: \(M_1 \equiv M_2 \) s.t.
 \[M_1 \models \varphi \iff M_2 \models \varphi \]

Which properties are preserved?
We define:

equivalence between models that strongly preserves \(\text{CTL}^* \):

- If \(M_1 \equiv M_2 \) then for every \(\text{CTL}^* \) formula \(\varphi \),
 \(M_1 \models \varphi \iff M_2 \models \varphi \)

preorder between models that weakly preserves \(\text{ACTL}^* \):

- If \(M_2 \succeq M_1 \) then for every \(\text{ACTL}^* \) formula \(\varphi \),
 \(M_2 \models \varphi \implies M_1 \models \varphi \)
ACTL / ACTL*

- **No** existential path quantifier (no E)
 - Only A
- **Negation** is applied to atomic propositions only
- Need v and ∧
- U and the dual of U, V (release)

\[M, \pi \models (f_1 \lor f_2) \iff \forall j \geq 0 \left[\forall i < j. \pi^i \not\models f_1 \right] \Rightarrow \pi^j \models f_2 \]

- \(f_1 \lor f_2 \equiv \neg (\neg f_1 \lor \neg f_2) \)
ACTL

Universal CTL

- \(p, \neg p \), for \(p \in AP \)

- \(g_1 \lor g_2, \ g_1 \land g_2 \)

- \(\text{AX} \ g_1, \ A(g_1 \ U \ g_2), \ A(g_1 \ V \ g_2) \)

 - \(\text{AG} \ g_1, \ AF \ g_1 \) (can be expressed by \(AU, AV \))

where \(g_1, g_2 \) are state formulas

Example: \(AG \ AF \ restart \) is an ACTL formula
The simulation preorder [Milner]

Given two models over AP:
\[M_1 = (S_1, I_1, R_1, L_1), \quad M_2 = (S_2, I_2, R_2, L_2) \]

\(H \subseteq S_1 \times S_2 \) is a simulation iff for every \((s_1, s_2) \in H\):

- \(s_1 \) and \(s_2 \) satisfy the same propositions
- For every successor \(t_1 \) of \(s_1 \) there is a successor \(t_2 \) of \(s_2 \) such that \((t_1, t_2) \in H\)

Notation:
\(s_1 \preceq s_2 \) if there is simulation \(H \), s.t. \((s_1, s_2) \in H\)
The simulation preorder [Milner]

Given two models over AP:
$M_1 = (S_1,I_1,R_1,L_1), \ M_2 = (S_2,I_2,R_2,L_2)$

$H \subseteq S_1 \times S_2$ is a simulation iff
for every $(s_1, s_2) \in H$:

- $L_1(s_1) = L_2(s_2)$

- $\forall t_1 \ [(s_1, t_1) \in R_1 \Rightarrow \exists t_2 \ [(s_2, t_2) \in R_2 \land (t_1, t_2) \in H]]$

Notation: $s_1 \leq s_2$
Simulation preorder (cont.)

\[H \subseteq S_1 \times S_2 \] is a simulation from \(M_1 \) to \(M_2 \) iff

\(H \) is a simulation and

for every \(s_1 \in I_1 \) there is \(s_2 \in I_2 \)

s.t. \((s_1, s_2) \in H \)

Notation: \(M_1 \leq M_2 \)
Bisimulation relation [Park]

For models M_1 and M_2 over AP,

$B \subseteq S_1 \times S_2$ is a **bisimulation**

iff for every $(s_1, s_2) \in B$:

- $L_1(s_1) = L_2(s_2)$
- $\forall t_1 \ [(s_1, t_1) \in R_1 \Rightarrow \exists t_2 \ [(s_2, t_2) \in R_2 \land (t_1, t_2) \in B]]$
- $\forall t_2 \ [(s_2, t_2) \in R_2 \Rightarrow \exists t_1 \ [(s_1, t_1) \in R_1 \land (t_1, t_2) \in B]]$

Notation: $s_1 \equiv s_2$
Bisimulation relation (cont.)

\[B \subseteq S_1 \times S_2 \text{ is a Bisimulation between } M_1 \text{ and } M_2 \text{ iff} \]

- \(B\) is a bisimulation, and
- for every \(s_1 \in I_1\) there is \(s_2 \in I_2\) such that \((s_1, s_2) \in B\) and
- for every \(s_2 \in I_2\) there is \(s_1 \in I_1\) such that \((s_1, s_2) \in B\)

Notation: \(M_1 \equiv M_2 \)
Bisimulation equivalence $M_1 \equiv M_2$

$B = \{ (1, 1'), (2, 4'), (4, 2'), (3, 5'), (3, 6'), (5, 3'), (6, 3') \}$
Simulation preorder

\[M_1 \preceq M_2 \]
$M_1 \leq M_2$
\(M_1 \leq M_2 \) and \(M_1 \geq M_2 \) but not \(M_1 \equiv M_2 \)
since they do not agree on all CTL.

Example: \(M_2 \models \text{EX AX c} \quad M_1 \not\models \text{EX AX c} \)
(bi)simulation and logic preservation

Theorem:
If $M_1 \equiv M_2$ then for every CTL^* formula φ,
$M_1 \models \varphi \iff M_2 \models \varphi$

If $M_2 \geq M_1$ then for every ACTL^* formula φ,
$M_2 \models \varphi \implies M_1 \models \varphi$
Lemma:
If $B(s,s')$ then

- for every path $\pi = s_0, s_1, \ldots$ from s there is a path $\pi' = s'_0, s'_1, \ldots$ from s' such that for every i: $B(s_i, s'_i)$
- for every path $\pi' = s'_0, s'_1, \ldots$ from s' there is a path $\pi = s_0, s_1, \ldots$ from s such that for every i: $B(s_i, s'_i)$

Proof:
Assume $B(s,s')$ and let $\pi = s_0, s_1, \ldots$ be a path from s. We construct a corresponding path π' by induction. ...
Theorem:
Let $B(s, s')$. Then for every CTL^* formula f, $s \models f \iff s' \models f$

Proof:
We show a simpler proof for CTL.
By induction of the structure of the formula.
Base:
• $f \in AP$

Step:
• $f = \neg f_1$
• $f = f_1 \lor f_2$
• $f = \mathbf{EX} \ f_1$
• $f = \mathbf{E} \ (f_1 \cup f_2)$
• $F = \mathbf{EG} \ f_1$
Abstractions

• They are one of the most useful ways to **fight** the state explosion problem

• They should **preserve properties of interest**: properties that hold for the abstract model should hold for the concrete model

• Abstractions should be **constructed directly from the program**
Abstraction

• Removes or simplifies details
• Removes entire components

that are irrelevant to the property under consideration, thus reducing the model size (number of states and transitions)
• Manual abstraction requires great creativity

• **Goal:**

 Automatically construct an abstract model that will preserve the required property
Goal

- In model checking, a small abstract model M_A will replace the full, concrete model M.

- The abstract model M_A has
 - less states and transitions
 - More behaviors

- M_A is an over-approximation of M.

- M_A preserves ACTL / ACTL* properties
 - If $M_A \models f$ then $M \models f$.

Outline for abstraction

- **Define** an abstract model that preserves the checked property

- **Consider different types** of abstractions

- **Automatically construct** an abstract model
 - Different constructions for different types

- **Automatically refine** it, if the abstraction is not detailed enough
• We first define an abstract model M_h based on a concrete (full) model M of the system

• Goal: constructing M_h directly from the program text
Abstraction preserving ACTL/ACTL*

We use **Existential Abstraction** in which the abstract model is an **over-approximation** of the concrete model:

- The abstract model has **more behaviors**
- But no concrete behavior is lost

- Every ACTL/ACTL* property true in the abstract model is also true in the concrete model
Given an abstraction function $h : S \rightarrow S_h$, the concrete states are grouped and mapped into abstract states: