Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2015-16
Lecture 12

5.1.16
Several additional slides
Given an abstraction function $h : S \rightarrow S_h$, the concrete states are grouped and mapped into abstract states:
How to define an abstract model:

Given M and φ, choose

- S_h - a set of abstract states

- AP - a set of atomic propositions that label concrete and abstract states

- $h : S \rightarrow S_h$ - a mapping from S on S_h that satisfies:

\[h(s) = h(t) \text{ only if } L(s) = L(t) \]

- h is called appropriate w.r.t. AP
The abstract model

\[M_h = (S_h, I_h, R_h, L_h) \]

- \(s_h \in I_h \iff \exists s \in I : h(s) = s_h \)
- \((s_h, t_h) \in R_h \iff \exists s, t \quad [h(s) = s_h \land h(t) = t_h \land (s, t) \in R] \)
- \(L_h(s_h) = L(s) \) for some \(s \) where \(h(s) = s_h \)

This is an exact abstraction
An approximated abstraction (an approximation)

• $s_h \in I_h \iff \exists s \in I : h(s) = s_h$

• $(s_h, t_h) \in R_h \iff$
 $\exists s, t \ [h(s) = s_h \land h(t) = t_h \land (s, t) \in R]$

• L_h is as before

Notation:
M_r - reduced (exact)
M_h - approximated
Logic preservation Theorem

- **Theorem** If φ is an ACTL/ACTL* specification over AP, then

$$M_h \models \varphi \Rightarrow M \models \varphi$$

$$(M_h \geq_{\text{sim}} M)$$

Proof: provide a simulation relation
End of lecture 12