Lecture 10
Symbolic (BDD-based) Model Checking for CTL
Model Checking \(f = EF g \)

Given: BDDs \(R(V, V') \) and \(g(V) \):

procedure CheckEF \((g(V)) \)

\[
\begin{align*}
Q(V) &:= \text{emptyset}; \quad Q'(V) := g(V) ; \\
\text{while } Q(V) \neq Q'(V) \text{ do} \\
& \quad Q(V) := Q'(V); \\
& \quad Q'(V) := Q(V) \lor \text{EX} (Q(V)) \\
\text{end while} \\
\end{align*}
\]

\(f(V) := Q(V) ; \quad \text{return}(f(V)) \)

Least fixpoint
The algorithm applies
• BDD operations (or \lor), and EX
• comparison $Q(V) \neq Q'(V)$ (easy)

Therefore, this is a symbolic algorithm!

The algorithm is based on the equivalence:

$$\text{EF } g \equiv g \lor \text{EX } \text{EF } g$$
Example: $f = EF g$

done
Model Checking $f = E[g_1 \cup g_2]$

Given: BDDs $R(V,V')$, $g_1(V)$ and $g_2(V)$:

procedure $\text{CheckEU}(g_1, g_2)$

1. $Q := \text{emptyset}$; $Q' := g_2$
2. while $Q \neq Q'$ do
 1. $Q := Q'$
 2. $Q' := Q \lor (\text{EX}(Q) \land g_1)$
3. end while

4. $f := Q$; return(f)

Least fixpoint
Model Checking $f = EG\ g$

Given: BDDs $R(V, V')$, $g(V)$

procedure \texttt{CheckEG} (g)
\begin{align*}
 Q & := S ; \quad Q' := g ; \\
 \text{while } Q \neq Q' \text{ do} \\
 & \quad Q := Q' ; \\
 & \quad Q' := Q \land \text{EX} \,(Q) \\
 \text{end while} \\
 f & := Q ; \quad \text{return}(f)
\end{align*}

Greatest fixpoint
Example: \(f = EG g \)
Bounded (SAT-based) Model Checking
State explosion problem - revisited

- state of the art symbolic model checking can handle effectively designs with a few hundreds of Boolean variables

Other solutions for the state explosion problem are needed!
SAT-based model checking

- Translates the model and the specification to a propositional formula
- Uses efficient tools (SAT solvers) for solving the satisfiability problem

Since the satisfiability problem is \textbf{NP-complete}, SAT solvers are based on heuristics.
SAT tools

- Using heuristics, SAT tools can solve very large problems fast.
- They can handle systems with 1000 variables that create formulas with a few millions of variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)
MiniSAT
Bounded model checking (BMC) for checking AGp

• Given
 - A finite system M
 - A safety property AGp
 - A bound k

• Determine
 - Does M contain a counterexample to p of k transitions (or fewer)?
Bounded Model Checking (BMC) for checking AGp

- **Unwind** the model for k levels, i.e., construct all computations of length k

- If a state satisfying $\neg p$ is encountered, produce a counterexample; Otherwise, **increase k**

[BCCZ 99]
Bounded Model Checking

Terminates
• with a counterexample or
• with time- or memory-out

The method is suitable for falsification, not verification
BMC for checking $\text{AG}p$ ($\text{EF} \neg p$)

Input to BMC:

A system over variables $V = \{v_1, ..., v_n\}$, where

- $\text{INIT}(V)$ is a propositional formula representing the set of initial states
- $R(V, V')$ is a propositional formula representing the transition relation

A specification:

- $\neg p(V)$ is a propositional formula representing the set of states satisfying $\neg p$
BMC for checking $\varphi = \text{EF} \neg p$

1. $k = 1$

2. Build a propositional formula f_{M}^{k} describing all prefixes of length k of paths of M from an initial state.

3. Build a propositional formula f_{φ}^{k} describing all prefixes of length k of paths satisfying φ.

4. If $(f_{M}^{k} \land f_{\varphi}^{k})$ is satisfiable, return the satisfying assignment as a counterexample.

5. Otherwise, increase k and return to 2.
• If \((f_M^k \land f_\varphi^k)\) is unsatisfiable:
 \(M\) has no counterexample of length \(k\)

• If \(k = 2^{|V|}\) then we can conclude \(M \models AGp\)
 - Too big - not practical

• The method is suitable for refutation
 - Bug finding
BMC for checking $\varphi = \text{EF} \neg p$

- $f_M^k (V_0, ..., V_k) =$
 \[\text{INIT}(V_0) \land R(V_0, V_1) \land ... \land R(V_{k-1}, V_k) \]

- Uses $k+1$ copies of $V = \{ v_1, ..., v_n \}$
- V_i represents the state after i transitions
BMC for checking $\varphi = \text{EF} \neg p$

- To check if p is violated within k steps:

 $$f^k_\varphi (V_0, ..., V_k) = \neg p(V_0) \lor ... \lor \neg p(V_k) = V_{i=0\ldots k} \neg p(V_i)$$

- To check if p is violated exactly on state k:

 $$f^k_\varphi (V_0, ..., V_k) = \neg p(V_k)$$
 - Useful when working iteratively on $k=0,1,2,...$
BMC for checking $\varphi = \mathbf{EF} \neg p$

- The iterative algorithm:

\[
\begin{align*}
\text{INIT}(V_0) & \land \neg p(V_0) \\
\text{INIT}(V_0) & \land R(V_0, V_1) \land \neg p(V_1) \\
\text{INIT}(V_0) & \land R(V_0, V_1) \land R(V_1, V_2) \land \neg p(V_2) \\
& \vdots \\
\text{INIT}(V_0) & \land R(V_0, V_1) \land R(V_1, V_2) \land \ldots \land R(V_{k-1}, V_k) \land \neg p(V_k)
\end{align*}
\]
Example – shift register

Shift register of 3 bits: \(\langle x, y, z \rangle \)

Transition relation:
\[
R(x, y, z, x', y', z') = x' = y \land y' = z \land z' = 1
\]

Initial condition:
\[
\text{INIT}(x, y, z) = x = 0 \lor y = 0 \lor z = 0
\]

Specification: \(AG (x = 0 \lor y = 0 \lor z = 0) \)
Propositional formula for k=2

\[f_{M,2} = (x_0=0 \lor y_0=0 \lor z_0=0) \land \\
(x_1=y_0 \land y_1=z_0 \land z_1=1) \land \\
(x_2=y_1 \land y_2=z_1 \land z_2=1) \]

\[f_{\varphi,2} = V_{i=0,..2} (x_i=1 \land y_i=1 \land z_i=1) \]

Satisfying assignment: 101 011 111
This is a counterexample!
A remark

In order to describe a computation of length \(k \) by a propositional formula we need \(k+1 \) copies of the state variables.

With BDDs we use only two copies of current and next states.
Bounded model checking

• Can handle all of LTL formulas
• Can be used for verification by choosing k which is large enough
 - Need bound on length of the shortest counterexample.
 • diameter bound. The diameter is the maximum length of the shortest path between any two states.
• Using such k is often not practical due to the size of the model
 • Worst case diameter is exponential. Obtaining better bounds is sometimes possible, but generally intractable.
SAT-based verification

• Induction
• Interpolation
• IC3