Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2015-16
Lecture 1
Why (formal) Verification?

- Safety-critical applications:
 - Air-traffic controllers
 - Medical equipment
 - Cars

 Bugs are unacceptable!

- Bugs found in later stages of design are expensive, e.g. Intel’s Pentium bug in floating-point division

- Testing does not provide full coverage
What are we doing about it?

Testing – build it, try it on some cases, hope it works for all cases.
What should we be doing?

Formal analysis and verification
The goal of the course: Formal Verification

Given

- A (model of) hardware or software system and
- a formal specification

does the system satisfy the specification?

Not decidable!
Formal Verification

Solutions:

- "Program correctness":
 Provide non-automated verification methods

- "Automatic verification / Model Checking":
 restrict the problem to a decidable one:
 - Finite-state reactive systems
 - Propositional temporal logics
Specifications

• Should be given for a system by the designer, developer, programmer, user

• Examples:
 - Does the program always terminate?
 - Does the program compute correctly multiplication of its inputs?
Specifications

• Additional examples:
 - When we press a sequence of buttons on the control panel of an airplane / microwave - do we get the desired result?
 - When we deposit money - does it get to our account?
 - Can a user access data only if he has the appropriate authorization?
Verification tools

Are developed and used in

• **Hardware industry:** Intel, IBM, Cadence, Mellanox, ...

• **Software industry:** Microsoft, NASA, ...

• **Universities**
Part 1 of the course

Program Correctness

- Non-automated
- Verify program with possibly infinite number of states
- Refer to the programs as input-output transformation
Ingredients for Formal Verification

1. Specification language
 • With formal semantics

2. Programming language
 • with formal semantics

3. Proof rules
 • For proving “Program P has the property ϕ”
Requirements from the proof rules

- **Soundness of the rules**: if we were able to prove correctness of program \(P \) w.r.t. specification \(\varphi \) using the proof rules, then \(P \) is correct w.r.t. \(\varphi \)

- **Completeness of the rules**: if \(P \) is correct w.r.t. specification \(\varphi \), then our proof rules can prove it
We handle:

• **Deterministic programs**
 - Exactly *one computation for every input*
 - *At most one output for each input*

• **Properties**
 - *Partial correctness*
 - *Termination*
 - *Total Correctness*
Some notations

- **Program variables**: $\bar{x} = (x_1, \ldots, x_n)$

- **A state of the program** σ **is a function from program variables to their domains**

- **The set of program states is defined by**:
 $$D_1 \times \ldots \times D_n \cup \{\bot\}$$
 Where D_i is the domain of variable x_i
Program states: Examples

- A program with integer variable x, Boolean variable b
 - States: $(5, F), (-17, T)$

- Elevator on 3 floors:
 - on_floor1, on_floor2, on_floor3: Boolean
 - in_elev1, in_elev2, in_elev3: Boolean
 - direction $\in \{\text{up, down}\}$, door $\in \{\text{open, close}\}$
 - State: $(F, T, T, T, T, F, \text{up, close})$
Defining the Specification

Specification is a pair \(<q_1(\bar{x}), q_2(\bar{x})>\)

where:

- \(q_1(\bar{x}), q_2(\bar{x})\) are first order formulas over program variables

- \(q_1(\bar{x})\) describes a condition holding **before** the execution of the program

- \(q_2(\bar{x})\) describes a condition holding **at the end** of the execution of the program
Examples

Specification example

• \(< (x \geq 0 \land y > 0), (z = x/y \land z \geq 0) > \)

A program with \(x \in \mathbb{N}, y \in \mathbb{R}, b \in \{T,F\} \)
States: \((5, 5.0, T), (7, 3.111, F)\)

\(q_1(x, y, b) = x > 0 \land b \)

\(q_2(x, y, b) = x+y > 0 \land \neg b \)
Computations of Programs

• \(\pi(P, \sigma) \) denotes a computation of program \(P \) from state \(\sigma \)

• \(\pi(P, \sigma) \) is a finite \((\sigma_1, \ldots, \sigma_k)\) or infinite \((\sigma_1, \sigma_2, \ldots)\) sequence of states where:
 - \(\sigma_1 = \sigma \)
 - \(\sigma_{i+1} \) is a result of applying an action from the program on \(\sigma_i \)

• This definition is not a full definition
More notations

• \(\perp \) - bottom : the undefined value

• \(\text{val}(\pi) \) denotes the final state of computation \(\pi \) (if exists)
 - \(\text{val}(\pi) = \sigma_k \) if \(\pi = (\sigma_1, \ldots, \sigma_k) \)
 - \(\text{val}(\pi) = \perp \) if \(\pi = (\sigma_1, \sigma_2, \ldots) \)
 - \(\pi \) is an infinite computation

• \(\sigma \models q(\overline{x}) \) if \(q(\overline{x}) \) is true when free variables in \(q \) are replaced with matching values in \(\sigma \)
• **Important remark:**

\[\bot \not\equiv q(\overline{x}) \text{ for every } q(\overline{x}) \text{ (even } \bot \not\equiv \text{ true)} \]

• **Example of formulas and their meaning:**

\[q(y) = \forall x(y|x \lor 2\neg x) \text{ where } x,y \text{ are naturals} \]

- For a state \(\sigma (x) = 1, \sigma (y) = 2, \sigma (z) = 1 \)

\[\sigma \models q(y) \text{ since } \forall x(2|x \lor 2\neg x) \text{ is true} \]
Partial Correctness

- A program P is partially correct with respect to specification $<q_1(\bar{x}), q_2(\bar{x})>$ iff for every computation π of P from an initial point of P, and for every state σ_0:
 - the computation starts from state σ_0 which satisfies $q_1(\bar{x})$ and
 - the computation terminates

 then
 - $q_2(\bar{x})$ holds at the end of the computation
Partial Correctness

• For every computation π and every state σ_0:

\[
(\sigma_0 \models q_1(\bar{x}) \text{ and } \text{val}(\pi(P, \sigma_0)) \neq \perp) \Rightarrow
\text{val}(\pi(P, \sigma_0)) \models q_2(\bar{x})
\]

• Notation: $\{q_1\}P\{q_2\}$
Total Correctness

- A program P is *totally correct* with respect to specification $<q_1(x), q_2(x)>$ iff for *every* computation π of P from an initial point of P, and for *every* state σ_0:

 if

 - the computation starts from state σ_0 which satisfies $q_1(x)$
 then

 - the computation *terminates*, and

 - $q_2(x)$ holds at the end of the computation
Total Correctness

• For every computation π and every state σ_0:

\[
\sigma_0 \models q_1(\bar{x}) \Rightarrow \text{val}(\pi(P, \sigma_0)) \neq \bot \quad \text{and} \quad \text{val}(\pi(P, \sigma_0)) \models q_2(\bar{x})
\]

• Notation: $<q_1>P<q_2>$
How do we write the specification:

“P terminates if the initial state satisfies q_1“
Separation Lemma

• For every program P and specification $<q_1,q_2>$:

 $\models <q_1> P <q_2>$

 if and only if

 $\models \{q_1\} P \{q_2\}$ and $\models <q_1> P \langle \text{true} \rangle$
Examples

• Which programs satisfy \{true\}P\{false\}?

• Which programs satisfy \langle true\rangle P\langle false\rangle?
Logical Variables in Specifications

Example 1:
Specify a program with a single variable x whose value at the end of the computation is twice its value at the beginning.
Logical Variables in Specifications

Solution: add fresh variables which are
- not part of the program and therefore
- their value does not change during the execution of the program

These variables are called logical variables

Con convention: We use logical variable X to preserve the value of variable x
Example 2:
Program which returns in variable \(z \) the multiplication of variables \(x \) and \(y \)

Convention:
Assertions \(q_1, q_2 \) are now defined over \(\bar{x} \) that includes both program variables and logical variables
While Programs: Syntax

\[S ::= x := e \mid \text{skip} \mid S_1 ; S_2 \mid \]
\[\quad \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi } \mid \]
\[\quad \text{while } B \text{ do } S \text{ od} \]

- **B** - condition - predicate over program variables
- **e** - expression over program variables
- **skip, x := e** - atomic actions
- **The rest** - compound actions
Operational semantics of while Programs

• σ - program state
• Configuration of a program is a tuple $C = \langle S, \sigma \rangle$ such that S is a while program and σ is a state
• The program E is the empty program, and for every program S:
 $E;S = S;E = S$
• A configuration is halting if $S=E$
Relation \rightarrow Over Configurations

\rightarrow is the smallest relation that satisfies:

1. $<x:=e, \sigma> \rightarrow <E, \sigma[x \leftarrow \sigma(e)]>

2. $<\text{skip}, \sigma> \rightarrow <E, \sigma>

3. For every while-program T:

 if $<S, \sigma> \rightarrow <S', \sigma'>$

 then $<S; T, \sigma> \rightarrow <S'; T, \sigma'>$
Relation → Over Configurations

4. If $\sigma(B)=true$ ($\sigma\models B$) then
 $<$if B then S_1 else S_2 fi, $\sigma$$>$ → $<$S$_1$, $\sigma$$>$
else ($\sigma(B)$=false)
 $<$if B then S_1 else S_2 fi, $\sigma$$>$ → $<$S$_2$, $\sigma$$>$

5. If $\sigma(B)$=true then
 $<$while B do S od, $\sigma$$>$ → $<$S;while B do S od, $\sigma$$>$
else ($\sigma(B)$=false)
 $<$while B do S od, $\sigma$$>$ → $<$E, $\sigma$$>$