2D-Signal Transforms and The Separability Property

Based on project presentation by Evgeny Tenetov
SIPC (236327), Winter 2014-2015
Background: Discrete Transform of 1D Signals

Let x be a $n \times 1$ vector (1-dimensional signal).
Let x be a $n \times 1$ vector (1-dimensional signal).

- An arbitrary 1-dimensional transform is $y = Tx$, where T is $n \times n$ matrix, hence y is the transform-domain representation of the signal formed as a $n \times 1$ vector.
Let x be a $n \times 1$ vector (1-dimensional signal).

- An arbitrary 1-dimensional transform is $y = Tx$, where T is $n \times n$ matrix, hence y is the transform-domain representation of the signal formed as a $n \times 1$ vector.

- It takes $O(n^2)$ operations (addition/multiplication) to calculate the transform. Since we calculate n coefficients, each by multiplying n-length row of T with the n-length signal vector.
Let X be an $n \times n$ matrix (2-dimensional signal / image).
Transforming 2D Signals

Let X be an $n \times n$ matrix (2-dimensional signal / image).

- An arbitrary 2-dimensional transform is $y = Tx$, where T is $n^2 \times n^2$ matrix, and x is a one-dimensional vector, of size $n^2 \times 1$, formed by stacking X’s columns.
Transforming 2D Signals

Let X be an $n \times n$ matrix (2-dimensional signal/image).

- An arbitrary 2-dimensional transform is $y = Tx$, where T is $n^2 \times n^2$ matrix, and x is a one-dimensional vector, of size $n^2 \times 1$, formed by stacking X’s columns.
- It takes $O(n^4)$ operations (addition/multiplication) to calculate the transform. Since we calculate n^2 coefficients, each by multiplying n^2-length row of T with the n^2-length signal vector.
Transforming 2D Signals

Let X be an $n \times n$ matrix (2-dimensional signal / image).

- An arbitrary 2-dimensional transform is $y = Tx$, where T is $n^2 \times n^2$ matrix, and x is a one-dimensional vector, of size $n^2 \times 1$, formed by stacking X’s columns.
- It takes $O(n^4)$ operations (addition/multiplication) to calculate the transform. Since we calculate n^2 coefficients, each by multiplying n^2-length row of T with the n^2-length signal vector.

The Problem

For large n the operation becomes extremely computationally demanding.
The Kronecker Product

Let A, B be $m_1 \times m_2$ and $n_1 \times n_2$ matrices, respectively. Then the **Kronecker Product** (or Tensor product) of A and B is an $n_1 m_1 \times n_2 m_2$ matrix defined as

$$A \otimes B = \begin{bmatrix}
 a_{1,1}B & \cdots & a_{1,m_2}B \\
 \vdots & & \vdots \\
 a_{m_1,1}B & \cdots & a_{m_1,m_2}B
\end{bmatrix}$$

Remarks:
We have
$$(A \otimes B)_{i+j(n_1-1)+k(n_2-1)+l(n_1 n_2-1)} = a_{i,i} b_{j,k}$$

It takes $n_1 m_1 n_2 m_2$ operations to calculate $A \otimes B$.

2D-Signal Transforms and The Separability Property
The Kronecker Product

Let \(A, B \) be \(m_1 \times m_2 \) and \(n_1 \times n_2 \) matrices, respectively. Then the **Kronecker Product** (or Tensor product) of \(A \) and \(B \) is an \(n_1 m_1 \times n_2 m_2 \) matrix defined as

\[
A \otimes B = \begin{bmatrix}
 a_{1,1}B & \cdots & a_{1,m_2}B \\
 \vdots & & \vdots \\
 a_{m_1,1}B & \cdots & a_{m_1,m_2}B
\end{bmatrix}
\]

Remarks:

- We have

\[
(A \otimes B)_{1+(i-1)n_1+(j-1),1+(k-1)n_2+(l-1)} = a_{i,k} b_{j,l}
\]

\[1 \leq i \leq m_1, \; 1 \leq j \leq n_1, \; 1 \leq k \leq m_2, \; 1 \leq l \leq n_2\]

- It takes \(n_1 m_1 n_2 m_2 \) operations to calculate \(A \otimes B \).
Examples

Example 1

\[
\begin{bmatrix}
1 & 3 \\
6 & 5
\end{bmatrix} \otimes \begin{bmatrix}
1 & 1 \\
2 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 3 & 3 \\
2 & 3 & 6 & 9 \\
6 & 6 & 5 & 5 \\
12 & 18 & 10 & 15
\end{bmatrix}
\]
Examples

Example 1

\[
\begin{bmatrix}
1 \\
6
\end{bmatrix} \otimes \begin{bmatrix}
1 \\
2
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
2 & 3
\end{bmatrix} \begin{bmatrix}
1 & 1 \\
6 & 5
\end{bmatrix} = \begin{bmatrix}
1 \\
2
\end{bmatrix} \begin{bmatrix}
3 & 3 \\
5 & 5
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 3 & 3 \\
2 & 3 & 6 & 9 \\
6 & 6 & 5 & 5 \\
12 & 18 & 10 & 15
\end{bmatrix}
\]

Example 2 - Hadamard matrices

\[
H_2 = \begin{bmatrix}
1 & 1 \\
-1 & 1
\end{bmatrix}
\]

\[
H_{2^n} = \begin{bmatrix}
H_{2^{n-1}} & H_{2^{n-1}} \\
-H_{2^{n-1}} & H_{2^{n-1}}
\end{bmatrix} = H_{2^{n-1}} \otimes H_2, \quad n \geq 2
\]
Example 3 - Outer product

In case u, v are column vectors, $u \otimes v^t = uv^t$ is also called outer product.

$$u \otimes v^t = uv^t = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} u_1 v_1 & u_1 v_2 & u_1 v_3 \\ u_2 v_1 & u_2 v_2 & u_2 v_3 \end{bmatrix}$$
Example 3 - Outer product

In case u, v are column vectors, $u \otimes v^t = uv^t$ is also called **outer product**.

$$u \otimes v^t = uv^t = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} u_1v_1 & u_1v_2 & u_1v_3 \\ u_2v_1 & u_2v_2 & u_2v_3 \end{bmatrix}$$

Properties of the Kronecker product

1. $(A + B) \otimes C = A \otimes C + B \otimes C$
2. $(A \otimes B) \otimes C = A \otimes (B \otimes C)$
3. $\alpha(A \otimes B) = (\alpha A) \otimes B = A \otimes (\alpha B)$
4. $(A \otimes B)^t = A^t \otimes B^t$
5. $(A \otimes B)^\ast = A^* \otimes B^*$ (conjugate transpose)
6. $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$
7. $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$
Let us consider the $n \times n$ signal X. A separable image-transform can be applied on the 2D-signal by $y = AXB^t$, where A and B are 1D transformations that operate separately on the signal columns and rows, respectively.
Separable Image Transforms

Let us consider the $n \times n$ signal X. A **separable** image-transform can be applied on the 2D-signal by $y = AXB^t$, where A and B are 1D transformations that operate separately on the signal columns and rows, respectively.

- The calculation of AXB^t takes $O(n^3)$ operations, instead of $O(n^4)$ operations, as in the general image transform case.
Let us consider the $n \times n$ signal X.

A **separable** image-transform can be applied on the 2D-signal by $y = AXB^t$, where A and B are 1D transformations that operate separately on the signal columns and rows, respectively.

- The calculation of AXB^t takes $O(n^3)$ operations, instead of $O(n^4)$ operations, as in the general image transform case.

- The 1D equivalent transform is obtained via $T = A \otimes B$, and can be applied on the vector (column-stack) form of X (in a complexity of $O(n^4)$).
Separable Unitary Image Transforms

For two unitary transforms A and B, the transform $A \otimes B$ is also unitary:

$$(A \otimes B)(A \otimes B)^* = (A \otimes B)(A^* \otimes B^*)$$
$$= AA^* \otimes BB^* = I \otimes I = I$$
Separable Unitary Image Transforms

For two unitary transforms A and B, the transform $A \otimes B$ is also unitary:

$$(A \otimes B)(A \otimes B)^* = (A \otimes B)(A^* \otimes B^*)$$

$$= AA^* \otimes BB^* = I \otimes I = I$$

Hence,

- 2D unitary transforms can be constructed from two unitary 1D transforms.
- The inverse transform of AXB^t is given by

$$((A^* \otimes B^*)x, A^*X(B^*)^t = A^*X\overline{B}$$
Example - 2-dimensional DFT

Let F be the one-dimensional DFT transform.

$$F_{mn} = e^{-\frac{2\pi imn}{N}}, \quad 1 \leq m, n \leq N$$

Then the two dimensional DFT is

$$F \otimes F, \quad FXF^t = FXF$$

and the inverse transform is

$$F^* \otimes F^*, \quad F^*XF = FXF$$
Example - 2-dimensional DFT

Let F be the one-dimensional DFT transform.

$$ F_{mn} = e^{-\frac{2\pi imn}{N}}, \quad 1 \leq m, n \leq N $$

Then the two dimensional DFT is

$$ F \otimes F, \quad FXF^t = FXF $$

and the inverse transform is

$$ F^* \otimes F^*, \quad F^*XF = FXF $$

In particular

$$ Y_{kl} = \sum_{n_1=1}^{N} \sum_{n_2=1}^{N} e^{-\frac{2\pi i k n_1}{N}} e^{-\frac{2\pi i l n_2}{N}} X_{n_1,n_2} $$

$$ Y_{kl}^{\text{inverse}} = \sum_{n_1=1}^{N} \sum_{n_2=1}^{N} e^{\frac{2\pi i k n_1}{N}} e^{\frac{2\pi i l n_2}{N}} X_{n_1,n_2} $$
Separable Basis

The new orthonormal basis associated with the separable transformation \(T(X) = AXB^t \) is

\[
\{ a_i^* \otimes (b_j^*)^t = a_i^* (b_j^*)^t \mid i, j = 1, \ldots, N \}
\]

where \(a_i^* \), \(b_j^* \) denote the \(i \)-th and \(j \)-th columns of \(A^* \) and \(B^* \) respectively. These matrices are called basis images.

This follows from

\[
\begin{align*}
(A^* E_{\alpha \beta} (B^*)^t)_{ij} &= \sum_{1 \leq k, m \leq n} a_{ik}^* b_{jm}^* (E_{\alpha \beta})_{km} = a_{i\alpha}^* b_{j\beta}^* \\
T^{-1}(E_{\alpha \beta}) &= A^* E_{\alpha \beta} (B^*)^t = a_{\alpha}^* (b_{\beta}^*)^t \quad (1 \leq \alpha, \beta \leq N)
\end{align*}
\]
Separable Basis

Each $N \times N$ matrix X can be written as

$$X = \sum_{1 \leq i, j \leq N} v_{ij}(a_i^* \otimes (b_j^*)^t) \quad v_{ij} = \langle X, a_i^* \otimes (b_j^*)^t \rangle, \quad 1 \leq i, j \leq N$$

where \langle , \rangle is the matrix inner product

$$\langle F, G \rangle = \sum_{1 \leq i, j \leq N} F_{ij} \overline{G_{ij}}$$
Example - 8×8 DFT Basis Elements

- IFT basis 8×8 - real part
- DFT basis 8×8 - imaginary part
Matrices which are Kronecker product of smaller matrices, can be efficiently multiplied using the property

\[(A \otimes B)(C \otimes D) = (AC) \otimes (BD)\]

The left hand side takes \(O((N^2)^3) + O(N^4) = O(N^6)\) operations, whereas the right hand side takes \(O(N^4) + O(N^3) = O(N^4)\) operations.
Matrices which are Kronecker product of smaller matrices, can be efficiently multiplied using the property

\[(A \otimes B)(C \otimes D) = (AC) \otimes (BD)\]

The left hand side takes \(O((N^2)^3) + O(N^4) = O(N^6)\) operations, whereas the right hand side takes \(O(N^4) + O(N^3) = O(N^4)\) operations.

If \(A\) and \(B\) are diagonalizable

\[U^{-1}AU = D_1, \quad V^{-1}BV = D_2\]

then so is \(A \otimes B\) :

\[(U \otimes V)^{-1}(A \otimes B)(U \otimes V) = (U^{-1} \otimes V^{-1})(A \otimes B)(U \otimes V) =\]

\[= (U^{-1}AU \otimes V^{-1}BV) = D_1 \otimes D_2 \quad (diagonal)\]
Usually the structure of the transform can be exploited for efficient computation. For example the Hadamard transform

\[
H_2 = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad H_{2^n} = H_{2^{n-1}} \otimes H_2 = H_2 \otimes \ldots \otimes H_2, \quad n \geq 2
\]

can be calculated in less operations than \(O(N^2), \quad N = 2^n \).

\[
H_{2^n} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} H_{2^{n-1}} & H_{2^{n-1}} \\ -H_{2^{n-1}} & H_{2^{n-1}} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} H_{2^{n-1}}x + H_{2^{n-1}}y \\ H_{2^{n-1}}y - H_{2^{n-1}}x \end{bmatrix}
\]

\((x, y \in \mathbb{R}^{2^{n-1}})\)

The recursion formula is \(T(N) = 2T(N/2) + N \). Hence the complexity is \(O(N \log N) \).
Usualy the structure of the transform can be exploited for efficient computation. For example the Hadamard transform

\[H_2 = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad H_{2^n} = H_{2^{n-1}} \otimes H_2 = \underbrace{H_2 \otimes \ldots \otimes H_2}_n, \quad n \geq 2 \]

can be calculated in less operations than \(O(N^2), \quad N = 2^n \).

\[H_{2^n} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} H_{2^{n-1}} & H_{2^{n-1}} \\ -H_{2^{n-1}} & H_{2^{n-1}} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} H_{2^{n-1}}x + H_{2^{n-1}}y \\ H_{2^{n-1}}y - H_{2^{n-1}}x \end{bmatrix} \quad (x, y \in \mathbb{R}^{2^{n-1}}) \]

The recursion formula is \(T(N) = 2T(N/2) + N \). Hence the complexity is \(O(N \log N) \).

This example can be generalized to an arbitrary transform of the form \(A_1 \otimes \ldots \otimes A_n \).
Fast Transforms

- The DFT, DCT and Walsh-Hadamard transforms can be calculated in $O(N \log N)$ operations. Such transform are called **Fast transforms**.
The DFT, DCT and Walsh-Hadamard transforms can be calculated in $O(N \log N)$ operations. Such transforms are called **Fast transforms**.

In fact, the Fourier transform became prevalent since the discovery of the fast Fourier transform (FFT) algorithm in the mid-1960s, which made it practical to calculate Fourier transforms.
The DFT, DCT and Walsh-Hadamard transforms can be calculated in $O(N \log N)$ operations. Such transforms are called **Fast transforms**.

In fact, the Fourier transform became prevalent since the discovery of the fast Fourier transform (FFT) algorithm in the mid-1960s, which made it practical to calculate Fourier transforms.

Hence each of the corresponding two dimensional transforms $AXA^t = A(AX^t)^t$ can be implemented in $O(N^2 \log N)$ operations.
Run-Time Demonstration

Execution time of separable transform vs general transform.
8×8 Walsh-Hadamard - Basis Elements
8×8 DCT - Basis Elements